
14th International 24-hour Programming Contest

http://ch24.org

1

2

Contest
Welcome to the 14th International 24-hour Programming Contest!

Rules

The contest starts at 2014-05-03 09:00 CEST and ends at 2014-05-04 09:00 CEST.

No solution can be submitted after the 24 hour time is up.

Web server

General contest related information will be available on our web server at http://server.ch24.org/.

Submission site

The same submission system will be used as during the Electronic Contest. It will be available at
http://server.ch24.org/sub/.

3

http://server.ch24.org/
http://server.ch24.org/sub/

Task summary

There are various kinds of problems, with various scoring rules and submission methods. Here we provide
a short summary:

Task
Web

submission
Interactive Scheduled

Score
decreases
with time

Penalty
for

wrong
answer

Time
delay
after

fail/pass

Scaling Queue
Max
score

A
(Halting
problem)

Yes No No Yes -5 0/0 No No 1000

B
(Bug fixing)

Yes No No No 0 60/60 No No 4000

C
(Complete
program)

Yes No No Yes -5 0/0 No No 1000

D
(Firing
game)

Yes No No Yes -5 0/0 No No 1000

E
(Disease)

Yes No No Yes -5 0/0 No No 1000

F
(Swap)

Yes No No Yes -5 60/60 Yes No 1000

G
(Slothlers -
Manage)

No Yes No Yes 0 0/0 No No 500

H
(Slothlers -
Produce)

No Yes No Yes 0 0/0 No No 500

I
(Slothlers -

Tournament)
No Yes Yes No -5 0/0 No No 3600

J
(Sonar)

No Yes Yes Yes -5 0/0 No No
about
5000

K
(OSM -
Search)

No Yes No Yes 0 0/0 Yes No 1000

4

Task
Web

submission
Interactive Scheduled

Score
decreases
with time

Penalty
for

wrong
answer

Time
delay
after

fail/pass

Scaling Queue
Max
score

L
(OSM -
Path)

Yes No No Yes -5 0/0 No No 1000

M
(OSM -
Race)

No Yes Yes Yes -5 0/0 No No 3000

N
(Dog tag)

Yes No No Yes -5 0/0 No No 1000

O
(Ball)

No Yes Yes Yes 0 0/0 No Yes 4000

Web submission: A static output file must be uploaded through the submission site.
Interactive: During the solution or the submission, either network communication or other kind of
interaction is necessary.
Scheduled: continously running task during the contest with scheduled interactions.
Score decreases with time: Submitting at the end of the contest is worth 70% of what would be
awarded at the beginning.
Penalty for wrong answer: Wrong answer gets -5 points (different value may be specified explicitly
in the task description).
Time delay after fail/pass: Duration in minutes while no new submission is accepted after a
wrong/correct answer.
Scaling: The score for this problem may change over time depending on submissions by other teams.
(Note that your last submission is considered and not your best one.)
Queue: Only one team can work on this task at a time (hardware task) so there will be a first-come,
first-served queue.

5

Ports

Port Task Service description

80 - web

6667 - irc

u123 - ntp server

u53 - dns server

u67,u68 - dhcp server

16700 G Slothlers - Manage

16800 H Slothlers - Produce

16900 I Slothlers - Tournament

u17000 , u17100 J Sonar

16400 K OSM - Search

16500 L OSM - Path

16600 M OSM - Race

16100 O Ball control

16200 O Ball video stream

Ports starting with u are UDP ports. All services are hosted on server.ch24.org .

Contact

General contest related information and data will be published on the web at http://server.ch24.org/.

Important announcements will be made on the #info irc channel and will be published on the web as
well.

For general discussions and questions join the #challenge24 irc channel.

There will be separate channels for task related problems as well: #A, #B, #C, #D, #E, #F, #G, #H, #I ,
#J , #K, #L , #M, #N, #O.

6

http://server.ch24.org/

Prologue: sloths
Sloths are cute little animals known for being slow and lazy. This common opinion is based on an old
misunderstanding. Sloths are actually highly intelligent, more intelligent than humans and dolphins put
together. They are also very focused: they use their extraordinary brain capacity for solving problems that
are both more interesting and more relevant than moving around fast or chatting.

Not wasting much thought on social interaction or training their motor system may have stopped us
humans from realizing how interesting these animals are, but times are changing. This year’s problem set
will reveal some of the problems sloths solve routinely and let you compare the efficiency of your team to
the average sloth!

J. Random Sloth
source: http://creepypasta.wikia.com/wiki/File:Happy-smiling-sloth.jpg

7

A. Halting problem (1000 points)

The sloth brain can store virtually any amount of information, so
in theory any sloth can know Everything. However, acquiring
new information about the sorrunding world is more of a
distributed task: the sloth that needs the information may not be
the one who acquired it, and asks a friend who in turn may ask
another friend. Anyone passing on a question also does some
processing and transformation on it. When the question finally
reaches the sloth who knows the information, the answer is
passed back to the original sloth - or not (if they fall in an
infinite loop).

Such queries can be modelled with function calls, which makes
it easier to understand whether a specific question can be
answered (you just need to solve the halting problem, which
should be trivial).

source: http://commons.wikimedia.org/wiki/File:Infiniteloop.jpg

The information processing of each sloth can be described by a function f that can be queried with one
argument A and returns a value. This function can be defined by four parameters: g, h, X and Y with the
following pseudo code:

function f(A) {
 if (A == 0) then {
 return g(A + X)
 } else {
 return h(A + Y)
 }
}

Where g and h are functions with similar definitions (queries to other sloths), X and Y are unsigned
integers between 0 and 264-1.

As a special case g or h functions may be a simple identity function (returning their argument) instead of a
full query to another sloth.

The + operation is modulo 264 addition.

Your task is to evaluate various queries from various sloths given the functional model of the sloth
computation system.

Input
First line contains two numbers: N the number of functions and Q the number of queries that needs to be
evaluated.

The next N-1 lines are the function definitions of the sloths indexed from 1 to N-1 and 0 is the index of the
identity function. A function is given by four numbers: g and h function indices and the X, Y parameters.

8

The next Q lines are the queries given by two numbers: f the function index and A the argument that the
function is applied to.

Output
For each query output a line with a single number: either the returned value or -1 if the query will never
finish.

Example input
10 10
0 0 4611686018427387904 9223372036854775808
6 2 6917529027641081856 4611686018427387904
8 4 13835058055282163712 11529215046068469760
0 0 13835058055282163712 6917529027641081856
1 0 11529215046068469760 6917529027641081856
2 0 11529215046068469760 16140901064495857664
6 0 11529215046068469760 0
1 2 0 16140901064495857664
9 7 13835058055282163712 4611686018427387904
7 4611686018427387904
6 16140901064495857664
0 4611686018427387904
0 4611686018427387904
7 11529215046068469760
6 6917529027641081856
0 16140901064495857664
0 11529215046068469760
2 9223372036854775808
8 4611686018427387904

Example output
-1
-1
4611686018427387904
4611686018427387904
-1
-1
16140901064495857664
11529215046068469760
-1
9223372036854775808

9

B. Bug fixing (4000 points)

Some researchers managed to find indirect proof
that some sloths are developing software in their
idle time. They even managed to capture some of
the software in object code format. For this kind
of hobby, as it turned out, sloths are simulating a
processor that runs in a functional manner.
Thanks to many hours of reverse engineering,
there is already a detailed description of the
imaginary processor.

However, the programs captured seem to be
buggy. Researchers believe they may gain more
trust from some of the sloths if they can prove
themselves to be worthy by playing the
sloth-programming-game and fix one of the
programs.

sources: http://vintageprintable.com/wordpress/
vintage-printable-animal/animal-wild-animal-miscellaneous

/animal-sloth-photo-two-toed-sloth-hanging-on-a-stick/
http://www.clker.com/clipart-cartoon-speech-bubble.html

Program format

Each program is a tree of operations, with a single operation as its root. The tree is represented as a
space-separated list of words. To parse a program, parse its root operation. To parse an operation,
consume a word from the input (which will specify the type of operation), then recursively parse the
operation’s children as needed (depending on the type).

There are 5 kinds of operations:

F op = Function
Parse a nested operation.
Stands for a function with one argument (a "lambda abstraction"). The function body is the
given operation.

A func_op arg_op = Apply
Parse two nested operations.
Stands for a function application. The function in func_op is applied to the argument in arg_op.

index = Reference
There’s no type character. Instead, a word that is a non-negative integer is a Reference with the
given number as its index.
Stands for a variable reference. 0 references the argument of the closest parent function; 1
references the argument of the parent function of the closest parent function, and so on.

O ascii op = Output
Parse a non-negative integer (0-127) and a nested operation.
Writes the ASCII character specified by the integer to the output (with no buffering), and
evaluates to the given operation.

10

Programs will output endlines with a single ASCII 10 (LF).
I op = Input

Parse a nested operation.
Reads a single ASCII character from the keyboard, and evaluates to op b7 b6 b5 b4 b3 b2 b1 -
the nested operation (which must be a function) applied to b7 (the MSB of the input character),
the result applied to b6, then so on until b1 (the LSB of the input character).
1 bits must be given by the expression F F 1
0 bits must be given by the expression F F 0
Programs will expect endlines (the Enter key) to be represented by a single ASCII 10.

Examples:

F F 1
Function(Function(Ref 1))
function(x) { function(y) { return x } }

F A F A 1 A 0 0 F A 1 A 0 0
Function(Apply(Function(Apply(Ref 1, Apply(Ref 0, Ref 0))), Function(Apply(Ref 1,
Apply(Ref 0, Ref 0)))))

function(g)
{
 return
 (function(x) { return g(x(x)) })
 (function(x) { return g(x(x)) })
}

Also known as the "Y combinator".
F O 65 0

Function(Output(65, Ref 0))
function(x) { return write_and_return(’A’, x) }

Evaluation

To execute a program, we use the two functions step and run , and a number of data types: thunk,
closure, val and environment.

A val is either an operation or a closure.

thunk and closure are distinct types, but both are pairs of a val and an environment.

An environment is a singly linked list with mutable elements. Elements held by the list are either a val, or
a thunk. It should be possible to create a new list head, referencing an existing environment in the "next"
pointer of the new node, without disrupting or copying the existing environment.

run (val, environment) returns a closure. To execute a program, evaluate its root operation using
run (root_op, empty_env) (and discard the result).

11

step (val, environment) returns a val or a thunk.

Every data type holds references, and are passed by reference (no need to copy anything).

/* the definition of run */

run(val, env)
{
 loop until val is not a closure {

 result := step(val, env)

 if result is a thunk {
 val := result’s val
 env := result’s environment
 }

 else { /* if result is a val */
 val := result
 }

 }

 return val
}

/* the definition of step */

step(val, env)
{
 if val is a Function operation {
 return a closure made from the function body op and env
 }

 else

 if val is a Reference operation {
 index := the index from the Reference in val
 result := env[index]
 /* the list in env is indexed, with first element indexed as 0 /*

 if result is a thunk {
 result := step(result’s val, result’s environment)
 env[index] := result
 }

 return result
 }

 else

 if val is an Apply operation {
 func := run(func_op from Apply, env)
 arg := a thunk made from arg_op from Apply and env

 func_env := the environment in the func closure
 func_val := the val in the func closure

 /* a new environment list node, with arg as the element, and func_env as the rest of the list */
 new_env := prepend arg to func_env

 return a thunk made from func_val and new_env
 }

12

 else

 if val is an Output operation {
 Write the given character to the output (with no buffering).

 return a thunk made from the output’s operation and env
 }

 else

 if val is an Input operation {
 c := ASCII code of a single character read from the keyboard

 if c is EOF, or > 127, then stop

 in_op := the input’s operation

 true := Function(Function(Ref(1))) /* F F 1 */
 false := Function(Function(Ref(0))) /* F F 0 */

 /* create 7 Apply operations, nested into each other */
 result := Apply(Apply(Apply(Apply(Apply(Apply(Apply(in_op,
 true if (c & 64) != 0, else false),
 true if (c & 32) != 0, else false),
 true if (c & 16) != 0, else false),
 true if (c & 8) != 0, else false),
 true if (c & 4) != 0, else false),
 true if (c & 2) != 0, else false),
 true if (c & 1) != 0, else false);

 return a thunk made from result and env
 }

 else

 {
 if none of the above (because val is a closure),
 return a thunk made from val and env
 }
}

Input

In the inputs directory, there are a number of small working example programs, and a main program.

The main program is a big program with an interactive menu system. The menu system can be used to
launch a self test function. The self test mechanism itself is known to work correctly (i.e. it evaluates
correctly whether each test passes or fails), but many tests fail. No other function in the program works,
but it’s assumed that if the tested subroutines in the program are fixed and the tests pass, then the rest of
the program will work too.

While the internals of the main program aren’t well understood, some researchers think the names of the
tests may be used as a starting point for mapping the subroutines.

13

Output

Submit a (partially) fixed main program.

8 tests are run on the program (some input is provided to the submitted program and a certain output is
expected; the program itself is not examined). Each passing test is worth 500 points (and it’s not
decreasing with time).

The program may be resubmitted an arbitrary number of times (there is no penalty). Only the last
submission is scored.

14

C. Complete program (1000 points)

Dying sloths often whisper their last will in a functional
programming language. Breathing may be hard in the last
moments and a few syllables are usually missing from these
programs. Realizing the importance of the testament of a sloth,
you decide to fix those broken programs by guessing the missing
tokens.

Given an incomplete program of the previous task (Bug fixing)
insert the minimum amount of symbols (F, A, I and O letters or
numbers) to make it grammatically correct.

source: http://commons.wikimedia.org/wiki/File:Jigsaw.png

Only the number of inserted tokens matter, the separating whitespace characters don’t count. A correct
program can be parsed using the following context-free grammar production rules:

 Op → ’F’ Op
 Op → ’A’ Op Op
 Op → ’I’ Op
 Op → ’O’ number Op
 Op → number

Where the Op non-terminal is the start symbol of the grammar, number is a terminal token consisting of
decimal digits and the quoted characters are single character terminal tokens.

Furthermore the following constraints must hold for a correct program:

The number following an ’O’ token must be between 0 and 127 inclusive.
A reference number (the result of the last production rule above) must be smaller than the number of
’F’ nodes above it in the parse tree (so the number of times the first rule is used to derive the
number in the last rule must be greater than the derived number).

Input
An incomplete program consisting of F, A, I and O letters and numbers separated by space.

Output
A correct program created from the input by inserting as few tokens as possible. (More than one solution
may be possible).

Example input
I A O 42

Example output
I F A O 42 0 0

15

D. Firing Game (1000 points)

Sloths didn’t like the Cutting back middle
management task of last year’s Electronic
Contest, but they did like the idea of optimizing
corporate downsizings. They’ve come up with the
following task which they believe to be a better
variant of the same story.

This is not the first crisis in the history of IGG.
Whenever cost reduction was needed in the past,
firing employees worked to some degree. This
affected workers at the bottom of the food chain
more often; managers could generally evade the
threat. Over the decades this caused an unusually
large amount of middle managers to accumulate.
The CEO finally realized there’s no other way to
balance the structure of the company but to make
their positions redundant.

source: http://images.businessweek.com/ss/08/12/1215_layoffs/image/intro.jpg

A middle manager is somebody who has subordinates (who might also be managers), but the CEO is not a
middle manager. Everyone can have at most M subordinates. If someone is fired, their subordinates are
reassigned to their boss. It’s not allowed to fire somebody, if that would mean their boss will have more
than M subordinates.

The CEO knows that competition usually improves results, so he hired two consultants that compete in
firing the middle managers. The consultants fire managers alternatively. The consultant who has no one to
fire loses, and won’t get paid for his work. Determine which consultant will get paid, the one who fires the
first manager, or the one who fires the second. Assume both consultants use the optimal strategy.

Input
First line contains T and M, where T is the number of test cases to be solved. Each test case starts with a
line containing a single integer N. In the following N lines, the Ith line contains:

k_1, the number of non-manager subordinates of the Ith manager
k_2, the number of manager subordinates of the Ith manager
k_2 numbers, that are the numbers of the manager subordinates of the Ith manager

It is guaranteed that the 0th manager is the CEO, the middle managers are numbered 1 to N-1.

Output
One line per test case: 1 or 2, depending on which consultant wins in that case.

16

Example input
2 3
6
1 2 1 3
1 1 4
1 0
1 2 5 2
1 0
2 0
8
0 2 6 7
3 0
0 1 1
2 0
2 1 3
1 0
0 3 4 5 2
2 0

Example output
2
1

In the first case, only managers number 2 and 4 can be fired in any case, so after two steps, the first
consultant can’t fire any more people.

17

E. Disease (1000 points)

Sloths don’t have to deal much with STDs. It’s not
because they are not engaged in romantic activities,
but because they calculate and arrange these
activities in a way that makes STDs unable to
spread. For doing so, they have a standard way
modeling these things and they can do all the
calculations in a fraction of a second before they
even make an eye contact with a pretty sloth from
the other sex. This method is so effective that STDs
are unable to survive in sloth populations.

source:
http://commons.wikimedia.org/wiki/File:MacConkey_agar_with_LF_and_LF_colonies.jpg

The sloth’s model of the situation is simple: there are male and female sloths. Some males are compatible
with some females so they can make a couple. They model the worst case (the most chance for STDs) and
assume that each night every sloth is randomly paired up with a compatible sloth from the other sex in a
way that the number of pairs is maximized. Sloths are not particularly monogamous, so the actual pairing
may differ from night to night.

The next step in the model is infecting one of the sloths with STD and simulating what happens: how
many other sloths have the chance of getting infected in the future. This is the step you are required to
compute in this task.

Input
For the same group of sloths, there are multiple questions with the original carrier of the virus being
different.

The first line of the input has 4 numbers, M F C Q: the number of males (M) and females (F), the number
of compatible connections (C), and number of questions (Q)

The next C lines have 2 numbers each, m f indicating that the male sloth m and the female sloth f are
compatible. Both males and females are identified by integers counting from 0.

The next Q lines start with an M or an F and a number k, that means that k-th male or female is the original
carrier for that question.

Output
For each question, output 2 lines. The first line should be 2 numbers, M and F, the number of males and
females in danger. The next line should have M+F numbers, each number referencing a sloth that may get
infected. First list all the M males in ascending order of their IDs then all the F females also in ascending
order. The original carrier should be included in the list.

18

Example input
9 10 19 5
0 0
1 0
2 1
2 2
2 3
2 4
3 4
4 5
4 6
5 5
5 6
5 7
6 6
6 7
7 7
7 8
7 9
8 8
8 9
M 0
M 2
F 4
M 4
M 7

Example output
2 1
0 1 0
1 3
2 1 2 3
1 1
3 4
3 3
4 5 6 5 6 7
2 2
7 8 8 9

19

F. Swap (1000 points)

There is a reason why sloths do not visit art museums:
their sense of art differs from ours. They prefer total
assymetry, so they do not find paintings beautiful if
they see the same color appear more than once in the
same row or the same column (of pixels).
Unfortunately they do have the computation power in
their brain to spot even a single repetion on the largest
paintings within a blink of an eye.

If you are ever going to get any sloth to look at your
paintings, you will need to fix them first. The easiest
way to make it look good for a sloth while keeping the
original content is to cut&paste portions of the
painting, swapping rectangular areas.

source: http://wugange.com/colorful-cubism-28004-hd-wallpapers.html

Your job is to come up with a list of rectangle swap instructions, which if executed in order, will result in
a sloth-compatible image. Since cutting and pasting is a tedious task, you need to minimize the number of
rectangle swaps.

Input
Input is a color png.

Output
The first line must contain one integer N, the number of swaps. The next N lines contain N swap
instructions. An instruction consists of 6 integers x1, y1, x2, y2, w, h, separated by arbitrary amount of
whitespace, where x1 and y1 are the coordinates of the UPPER LEFT corner of the first rectangle to swap,
x2 and y2 are the coordinates of the UPPER LEFT corner of the second rectangle, and w and h are the
(common) width and height of the rectangles, respectively, in pixels.

Pixels are indexed from zero and pixel (0, 0) refers to the upper left corner of the image. Furthermore w
and h must be at least 1.

The two rectangles must not overlap and both rectangles have to lie entirely within the image. Any swap
instruction that violates these conditions is considered invalid. Any submission containing invalid swap
instructions is rejected.

Trailing garbage at the end of the lines is ignored. Trailing empty lines after the valid swap instructions are
allowed but non-empty lines are not.

20

Scoring

The final score is

 SCORE = 100*(1 - sqrt(1 - BEST/N))

where N is the number of swaps in the submission and BEST is the number of swaps in the best
submission.

Example input

(Note: the image is magnified by 10 times -
the original png is in the input directory as 0.png)

Example output
4
12 12 12 24 5 5
1 16 16 1 3 3
15 3 2 21 5 4
5 8 15 18 4 5

21

GHI. Slothlers
Sloths often spend their time day-dreaming about the whole world densely populated with a crowd of
sloths running a complex economy. Since sloths are very peaceful, they never imagine wars, only building
and creating. And when a sloth imagines an utopia, it’s not a set of blurry general thought, but very precise
and detailed.

Prof. Scott S. Royknock, Director of Research at the International Sloth Research Foundation believes this
utopia will turn into reality some day and the whole world will be governed and operated by sloths. The
key for human race to survive under such conditions is to fully understand the new system. In this task we
are looking for the team who knows the most about this system; knowledge is proven by utilizing the
system better than other teams in one-to-one matches.

Overview

The game is played on a square grid map. In the description, the
squares will be referred to as fields. Each field has a ground type,
each field can contain a building, some resources, and each field can
be connected to some of the 4 adjacent fields with roads. The map
has a toroid structure, which means that moving east from the east
edge of the map goes to the west edge, and moving north from the
north edge goes to the south edge.

The game is always played with two players. The goal of the game is
to get a bigger score than your opponent. This can be achieved
through claiming territory, mining resources, processing those
resources, then turning those resources into score points.

Overview of a field

This task has a single player portion, where the teams play against a passive AI, and certain pre-set
objectives must be met. There is also a multi player portion, where the teams are paired up for the games
in a Swiss tournament like system, and scoring for the competition will be based on the final standing in
this ranking.

At the beginning of a game, players will already have some basic buildings, resources, and some roads
built. The game is played in alternating turns for the two players. Each turn, players can build roads and
buildings, use buildings to produce new resources, and move their existing resources around. They send
their commands for each turn in a network protocol, and receive a text stream containing their opponent’s
actions and feedback on their actions.

Players have a time constraint of 4 seconds for each turn, and a chess clock-like total time limit of 400
seconds for the whole game, that runs while waiting for commands from that player. Each turn takes at
least 0.1 seconds on the clock, even if the player responded sooner. If a player’s time limit runs out, the
player is considered to have passed the turn, taking no actions. The game is over after 1500 turns, and the
player with more score at that point wins.

22

The rest of the description will start with the overview tables of the building types, ground types and
resources. Then the detailed rules of the game, the communication protocol, and finally technical details
like how/when servers will be run and so on.

23

Reference tables

Ground types

letter - ground type description image

G - Grass General terrain with no special properties

W - Water Water is an obstacle that can’t be built over

S - Stone Stone can only be produced from stone fields. Contains 40 stones

C - Coal Coal can only be produced from coal fields. Contains 40 coal pieces

I - Iron ore Iron ore can only be produced from iron ore fields. Contains 40 iron ore

Resources

letter - name image

W - wood

S - stone

G - grain

M - meat

F - food

C - coal

I - iron

P - product

24

Buildings

The one letter code for the buildings is derived from the resource they produce.

letter - building name building cost ground type
production

image
cost time product

O - Junction foundation 1 wood 1 stone - - - -

J - Junction 1 wood 1 stone - - - -

W - Lumberjack 4 stone - - 4 wood

S - Quarry 4 wood Stone - 2 stone

G - Farm 4 wood 2 stone Grass - 3 wheat

M - Pig farm 2 wood 4 stone - 1 wheat 5 meat

F - Tavern 4 wood 4 stone - 1 wheat 1 meat 2 food

C - Coal mine 4 wood 6 stone Coal 1 food 3 coal

I - Iron mine 4 wood 6 stone Iron ore 1 food 3 iron ore

P - Factory 2 wood 6 stone 2 iron - 1 iron 1 coal 2 product

N - Market 4 wood 2 stone 4 iron - 1 product 1 1 score

Game rules

Turn structure

Players have separate, alternating turns, that are numbered, so the game starts with the 1st turn of player 0,
then the 1st turn of player 1, then the 2nd turn of player 0, and so on. Each turn consists of 2 parts: first
part is the player actions, second part is automatic bookkeeping finalizing the turn, like buildings finishing
their tasks and producing resources, or increasing the score.

25

Coordinate system

Fields are referenced by their (x,y) coordinates on the grid map. The map wraps around in both x and y
directions (it has toroid topology) so a field always has four adjacent fields in the four main directions:

north: -y direction
east: +x direction
south: +y direction
west: -x direction

Construction of buildings

A field can be built on in 2 steps. First a junction must be built, which can already be used for
transportation. Then, if needed, production buildings can be built on top of a junction. Buildings
(including junction foundations) can never be built on adjacent fields, even to the opponent’s buildings.

Junctions need to be built in 2 steps. An empty field that only has empty fields adjacent to it, and has at
least one road, can be converted to a junction foundation for 1 wood and 1 stone, and then the junction can
be built over the foundation for another 1 wood and 1 stone.

Every building other than the junction and junction foundation is a production building. Production
buildings are built over junctions. Construction of buildings is instantaneous, if a field has all the
necessary resources for a building, it can be built there. The build action removes the necessary wares, and
replaces the junction with a building. It’s impossible to build a building if more than 4 resources would be
left after the building is complete.

Some buildings require a specific ground type, and can’t be built on other types, and none of the buildings
can be built on water. These requirements can be found in the table of buildings.

Construction of roads

Roads are constructed in road segments. Each road segment connects two adjacent
fields. Water fields can’t have roads built to them. The cost of each road segment is 1
wood and 1 stone, that has to be in the field from which you build the road segment.
On successful building, the resources are removed, and the new road segment is
added.

For example the road segment built from (1, 3) to the north is the same as the road
segment going from (1, 2) to the south so it is enough to build a road from one
direction, but the direction matters when building because of the placement of the
resources and road constraints described below.

A road network

Road segments form paths on the map. A path is defined as a series of road segments with no buildings
between them, however junction foundations do not count as buildings on the road network. So, for
example, on the figure, there are paths between (1, 1) and (1, 3), between (1, 3) and (3, 3), between (3, 3)
and (2, 1), and between (3, 3) and (1, 4).

26

The paths can’t have forks, so it is not allowed to build a road from a field which is empty, but already has
more than one road segment going to it. (So it wouldn’t be possible to build a road segment south from (2,
4), since that would create a fork at a junction foundation.)

Paths have to be built one way, it is not allowed to build a path from two sides that meet in the middle.
The exact rule is that it’s not allowed to build a road segment to a field with no building but 1 road (a
junction foundation does not count as a building here either). It is of course allowed to build from such a
field. In the figure, it is not allowed to finish the path by building to the east from (1, 1), only by building
west from (2, 1).

Transportation

Resources can be moved about the map by the player who owns them. Each resource can only be moved
once per turn, and a resource that has already been moved that turn can’t be used for anything else, like as
a construction material, or as input to a production building.

A field can only hold a limited amount of resources at the time. For junctions this limit is 12, for fields
with production buildings it is 4. On other fields there is a limit of 2, but also, resources can only be at one
field along a path at any point. (So, in the example, the player couldn’t move anything north or south from
(3, 3), because those paths are already occupied. They could move something west however.)

A path can only be used once per turn to move 1 or 2 resources along it. (In the example, if we moved the
meat south from (1, 2), we still couldn’t move anything south from (1, 1), in the same turn, since the path
from (1, 1) to (1, 3) was already used.) On the other hand, a road segment that was built that turn can
already be used once.

Destroying buildings and roads

Buildings and roads can also be destroyed by their owners. This might be important for exploiting every
field, since neighbouring fields can’t be built upon.

When production buildings are dismantled, half of the building materials of each type is reclaimed and the
building is changed to a junction. The reclaimed resources can already be moved or used in the same turn.

When junctions are dismantled, they also give back half the building materials (1 wood and 1 stone). They
can only be dismantled, if the final state won’t violate any of the other rules, so there can’t be any
resources on the field, nor anywhere along the path that the field will be part of after the junction is
removed. A junction that is not connected to any roads can’t be dismantled.

Junction foundations are just erased and don’t give back any resources.

Road segments can be erased, which doesn’t give back any resources. The only limitation is that erasing
the road isn’t allowed to leave a junction foundation, or any resources on a field with no connection.

27

Production

The players have to use their buildings to create basic resources, then process those into more advanced
resources, and gain score.

The player has to explicitly command their buildings to be used. Some buildings need resources to run,
they can only be successfully used if the needed resources are on the field, in which case they are
removed. The mining type of buildings (quarry, coal mine, iron mine), can only be used until the field they
are on is exhausted. Each stone, coal, and iron ore field only contains 40 of its resource type, once all of
that has been mined from the field, it can’t be used for mining.

If the building was successfully used, it will run for a set amount of turns, the number of turns for each
building can be found in the building table. After that many turns, the building finishes at the end of the
turn. (If the building run time is 1, it means it finishes at the end of the turn it was started in.) When the
building finishes, there are 3 possible results. If the building is a market, it gives 1 point to the owner,
increasing their score. For other production buildings, it produces the resource, but if the field with the
building already has 4 resources, the new resource can’t be stored, and so it is wasted. In any case, the
building is free again, and can be used next turn.

Resources are only created this way, and by dismantling buildings. They can only disappear from the
game world by being used, either by a production building, or for constructing something. There is no
other way to get rid of resources.

Territory ownership

Whenever the player successfully builds a junction, they claim the territory in a square of "radius" 3 from
the new junction. (That is, a 7 by 7 square with the junction in the middle.) Any territory in that square
that no one owns yet is now theirs until the end of the game.

Buildings and roads can only be built on owned territory. The players already own the territory belonging
to their starting buildings at the start of the game. (These territories won’t overlap between the two
players.)

Initial state

To start off the players’ economy, at the start of the game, they will each have a quarry (on a stone field),
3 wood, and a road segment connected to it. (Except in the manage subtask, where a complete economy is
there already.)

Maps will be symmetric, so the same amount of resources can be reached by both players, and they will
have the same amount of starting buildings/resources as well. Still, the starting player has a slight
advantage, so matches will be set up in a way where all teams start in about half of their matches.

Communication protocol
The communication protocol is completely text based, through one bidirectional TCP connection. TODO:
more TCP if nsz wants

28

The protocol is based on lines, any line separator works, empty lines are ignored. Each line is separated by
spaces into words, and the first word is always one letter. This first one letter word gives the command.
Here is a summary table showing all possible commands:

letter command name format

Commands only sent by server

G new game G [player number]

Z map size Z [width] [height]

L map ground data L [one line of ground data]

C countdown to game start C [seconds left]

T start of a players turn T [turn] [player]

F end of a players turn F [turn] [player] [time_left]

X error executing a player command X [4 letter error message]

P building finished producing a resource P [x] [y] [resource type]

W building wasted a resource W [x] [y] [resource type]

S player score increased S [x] [y] [new score]

Commands sent only by player

T
finish sending commands for previous turn and declare next turn to

send commands to
T [turn]

Commands sent by both player and server

M move resources
M [x] [y] [resource(s)]

[direction]

B build building B [x] [y] [building type]

D dismantle building D [x] [y]

R build road segment R [x] [y] [direction]

E erase road E [x] [y] [direction]

U use production building U [x] [y]

We’ll detail these commands based on the phase of the game it can happen in.

29

Connection phase

This phase is so that players have some time before the match to set up. When someone connects, they get
the initial state of the game. The initial state is in a format like this:

G 0
Z 14 7
L GWCGGGGGWCGGGG
L CGGGGGGCGGGGGG
L GWSGCWGGWSGCWG
L WWGSGWWWWGSGWW
L GSCGIGCGSCGIGC
L GICGSGGGICGSGG
L GIGGWGGGIGGWGG
T 0 0
B 3 3 S
R 3 3 E
F 0 0 400
P 3 3 W
P 3 3 W
P 3 3 W
T 0 1
B 10 3 S
R 10 3 E
F 0 1 400
P 10 3 W
P 10 3 W
P 10 3 W

The parts of the initial state are:

"G 0 " means that you are playing as player 0 in this game. The two players are player 0 and 1.
"Z 14 7 " means that the map in this game is 14 by 7.
The next height lines are the ground data of the map, in L commands
After that comes the "0th turn" of the game, which details the starting buildings, roads and resources
for each player. It can only contain B and R commands in the action part of the turn, and only P
commands in the end of the turn. These B and R commands work slightly differently from normal
turns, because they don’t consume resources.

After the initial state, there is a countdown to the beginning of the first turn in the form of "C
<second> " commands.

During this connection phase the players don’t have to send any commands to the server, but they are
allowed to send commands to their first turn, as specified in the next phase.

Game phase

During the game, the server broadcasts what is happening in the game to both players (they receive
exactly the same messages including error messages). The players send their commands turn by turn. If a
player connects during this phase, they won’t get the current state of the game, they should connect during
the connection phase.

30

Server broadcast

The protocol was designed in a way that following what is happening should be relatively easy, even if it
makes the rules a bit more complicated.

The server broadcast is separated to turns by T and F commands. For example the start of the 1st turn of
player 0 is marked with "T 1 0 " in the broadcast, and the end of the 5th turn of player 1 is marked with
"F 5 1 15 ", where the last number is the remaining time left on the chess clock of player 1 truncated to
seconds.

The first part of each turn, marked by the T command, is the player actions. These are the same commands
the player sent for that turn, however the server broadcast only contains the successfully completed
commands.

If the player sent a command that is against some rule, instead of the command, an X failure message will
be sent. Also, their turn will end, and the rest of the commands sent for that turn will be ignored. So, if an
X command is sent on the broadcast, it will always be followed by an F command.

The first phase of a turn can end when:

the player sends a new T command,
the player sends a failed command,
the player ran out of time for the turn or for the game.

The second part of each turn, marked by the F command, is when the production buildings’ timers tick. If
they are finished, the three possible results are marked with the command P, W or S. Either means that the
building can be used again next turn.

"P 2 2 S " would mean that a new stone resource was produced at the coordinates (2, 2), and it can
be moved or used from next turn. This is the normal way new resources are produced, but the player
command D can also place resources on the map.
"W 2 2 " would mean that a resource is wasted at coordinates (2, 2), because the field is full, and
can’t store the produced resource. The building can be used in the next turn again. The production
inputs and mining capacity used are not given back after a wasted product.
"S 2 2 10 " would mean that the market at coordinates (2, 2) has finished selling a product, and so
can be used again. It also informs everyone, that the score of the player, whose turn it is, is now 10
points.

Player commands

Before the player sends commands for a turn, they must mark which turn they want to execute those
commands in. So, normally, if they want to do any actions in their first turn, the first thing they would
send is "T 1 ". The T command is also used to mark that they are done sending commands for the
previous turn.

The server only caches player commands for 1 turn at a time for each player. This means, that if you sent
commands for your turn N, you shouldn’t send commands for another turn until you’ve seen "F [N]
[player number] [time_left] "

31

These rules means that the normal flow of game for the players for turn N is:

At the end of the previous turn, they already sent "T [N] ".
They wait until they’ve seen "F [N-1] [player number] [time_left] " in the server
broadcast.
They send their actions for turn N.
They send "T [N+1] " to mark that they are done for the turn.

For the player actions, we’ll need designations for the 4 main directions:

N - north, -y
E - east, +x
S - south, +y
W - west, -x

First we’ll list the normal behaviour for each action, then there will be a big table with the possible
failures, which are also a quick reference for the ways a command can be against the rules.

"M 2 2 WP N " would mean moving a wood and a product north from (2, 2). The resource part can
be one or two letters, depending on whether the player wants to move one or two resources. If
successful, it means that a wood and product, that haven’t been moved in this turn yet, will be
removed from (2, 2), and added to (2, 1), and they can’t be moved again this turn.
"B 2 2 W " would mean constructing a lumberjack at (2, 2). If successful, the resources necessary
for a lumberjack (4 stone) will be removed from the field, none of which was moved yet. The
junction will be changed into a lumberjack. If constructing a junction, another effect is claiming the
unclaimed territory around it for the player.
"D 2 2 " would mean dismantling the building at (2, 2). This can mean slightly different things if
successful, depending on the building there. If it’s a junction, or a junction foundation, there will be
no building remaining. If it was a junction, there will be 1 wood and 1 stone placed there. If it was a
production building, it will be replaced by a junction, and half of the construction resources of each
type will be placed there. In any case, the recovered resources are new, and can still be moved once
this turn.
"R 2 2 N " would mean constructing a road segment from (2, 2) to (2, 1). If successful, it will
remove a wood and a stone from (2, 2), and connects (2, 2) and (2, 1) by a road segment. (The wood
and stone can’t have been moved that turn.)
"E 2 2 N " would mean erasing the road segment from (2, 2) to (2, 1). If successful, it will just
remove that road segment.
"U 2 2 " would mean using the production building at (2, 2). If successful, it will remove the
necessary resources from the field. It will also render that building unusable for the given amount of
turns, until a P, W or S is sent for it.

Error
code

Description

General errors

X SYNT Syntax error, that command couldn’t make sense at any stage in the game

32

X NOWN Trying to execute an action in a field that is not owned by the player

M errors

X MRES No resource of the correct type that can be moved is on the field

X MROD The road to be used either isn’t built, or was already used this turn

X MFUL The field you wanted to move to is full, it can’t take the resource(s)

X MPBS Path is busy, there are already resources somewhere along it

B errors

X BNFR
When trying to build a junction foundation, the field or one of the neighboring fields isn’t

empty.

X BJTF Trying to build a junction on something other than a foundation

X BBJT Trying to build a production building on something other than a junction

X BRES You don’t have all the resources needed to build the building

X BTMR Too many resources would be left on the field after completing the building

X BGND Trying to build mining building on wrong type of ground

D errors

X DNBD There is no building to be destroyed

D errors specific to junctions

X DDIV Junction can’t be destroyed, because path would divide at the spot

X DORP Junction can’t be destroyed if it’s an orphan, that is, if no roads lead there

X DRES
Junction can’t be destroyed if there are resources on the spot (because the 2 resources from

the dismantling would put it over capacity

X DPBS Path is busy, there are already resources somewhere along it

R errors

X RDIV Road can’t divide (field can’t have more than 2 roads) at a spot with no buildings/junction;

X RBLT Road is already built

X RWTR Can’t build road into water field

X RTWS Can’t build a path from two sides

X RRES Don’t have the resources to build road there

E errors

33

X ERNB Road isn’t built, so can’t be destroyed

X ERFO Would leave a foundation orphaned on a field with no roads

X ERRO Would leave some resource orphaned on a field with no building and roads

U errors

X UNPR Trying to use a field with no production building

X URUN Trying to use a building that is already running a production

X URES You don’t have the needed resources to use your production building

X UOUT Mining field is out of resources, it is exhausted, so can’t be mined

Input
The graphics created for our public display, which are used throughout this document are in the input files
package. They can be used to create graphic GUIs for the game without having to draw something. Of
course, those who prefer a command line interface can freely ignore these images.

34

G. Slothlers - Manage (500 points)

In this task your team is provided with the full
infrastructure for a succesful civilization, you just need to
run the economy and sell 40 product before the time is up.
If the required amount of products are sold, score is
awarded.

Scoring is similar to an input of an algorithmic problem: if
enough products are sold, you get the 500 score scaled
with time passed since the start of the contest.

This is a single player practice server for testing the protocol and the economy part of your AI.

In this subtask, the game ends when your team disconnects. Unlike the multi player servers, whenever the
game ends, the server restarts in a few seconds, and if you connect again, the economy will be reset to the
same initial state.

35

H. Slothlers - Produce (500 points)

You are alone on a map with the standard startup kit. You
have to build your economy from the ground up and sell
50 product within a fixed amount of turns to earn score.

Scoring is similar to an input of an algorithmic problem: if
enough products are sold, you get the 500 score scaled
with time passed since the start of the contest.

This is a single player practice server for testing the
protocol and the building part of your AI. Unlike the
tournament servers, these games end when your team
disconnects. Whenever the game ends, the server restarts
in a few seconds, and if you connect again, you get a new
map in starting position.

36

I. Slothlers - Tournament (3600 points)

In the final task about slothlers, the teams have
to compete with each other in running their
economy. During the competition, 8
tournaments will be held, where the players
can demonstrate their economy skills.

Each tournament will be held in the Swiss
tournament system, in 10 rounds. The first
tournament starts at the beginning of the
competition, each lasts 2 and a half hours, and
there are half hour breaks between them. When
a tournament is running, a new round of
matches starts at 00, 15, 30 and 45 minutes into
the hour. There is a connection period for a
minute, and the first turn starts at 01, 16, 31 or
46.

The state of the current tournament, and the history of past tournaments can be followed in the public files
available on our servers. Your team always needs to connect to the server on the same port, and the
matchmaking is done on our side.

At the end of a tournament, scores are distributed based on the final ranking. The 1st prize for the first
tournament is 100 points, which increases linearly to 800 points for the last (8th) tournament. Lower ranks
get linearly less points, with the last (30th) place getting zero points. In case of a tie, each tied team gets
the score corresponding to the lowest rank, so for example all the teams that didn’t win any games in the
tournament will tie for last place, and get no points.

37

J. Sonar (about 5000 points)

Sloth populations are like ice bergs: only a small portion of
the sloths live above sea level. At least this is what the new
generation of sloth researchers are claiming when they
apply for funds for expensive toys field research equipment.
They believe underwater sloths live obviously in the deep
sea (this why no one has ever seen them). There’s a race
between these youngsters to find the first deep water sloth.

Unfortunately they are not very good in sensors, navigation,
programming or anything else that’d be required to operate
their submarine drones. Senior researchers realized the
outstanding importance of this field, so they set up
underwater test arenas for the submarine operators to
practice in - and you decided to help the juniors with their
drone control issues.

http://www.flickr.com/photos/primevalnature/3193816366/

You control submarine drones equipped with:

a 4 microphone array
an underwater loudspeaker
north-south and east-west thrusters and velocity sensors
an underwater mine ejector system, loaded with a single mine

Your task is to navigate arenas based on sound only, avoid the walls, find the treasure, and blow up the
opposing team’s drone on occasion.

There are two separate arenas with enough place for 15 drones in them. In each 10 minutes, a new round
begins with new, unknown walls installed in the arenas, the drones repositioned and loaded with mines,
and treasure added. (In each round, the teams are randomly sorted between the arenas.)

Treasure is marked with beepers. In each round, treasure is placed in 8 different positions in each arena.
Teams don’t take the treasure, just find them (so even if a drone finds a treasure point, it remains available
for other teams). If your drone is destroyed, you lose all the treasure you found so far in the round.

Collision with walls will destroy your drone. The drone is immediately moved to a random position in the
arena, and you lose all treasure found. There is no collision between drones or between a drone and a
treasure, or other any source of noise.

Drones send back 4 channel audio captured by their microphone arrays, sampled at 5000 Hz. The 4
channels come from 4 microphones, located north, east, south and west from the drone body. Drones keep
a constant orientation (they don’t rotate).

A drone’s loudspeaker can be used to bounce sounds off surrounding walls, therefore determining their
location. The loudspeaker needs a lot of energy - this energy is replenished constantly and freely, but can
be used up very quickly by sound emission. The amount of used energy depends on the amplitude of the

38

emitted signal. (Therefore drones are capable of emitting short, interrupted sounds loudly, or continuous
sounds quietly.)

Drones are mostly silent, but the thrusters emit some noise when used. Only walls reflect waves, small
objects (such as drones, mines and treasure) don’t.

Each drone carries a single proximity mine . After releasing the mine, the mine will stay in the same
position and arm itself in a few seconds. Before arming, the mine emits quick beeps (a different sound
from treasure); after it’s armed, it still beeps, but much slower.

When a mine is armed, it will blow when a drone comes within a certain distance to it, destroying the
drone (which will then be moved to a random position, and all treasure is lost). Drones are naturally not
immune to mines released by themselves.

Scoring

At the end of each round, your team will receive a number of points for found treasure and other drones
blown up (and then the scores are reset before the next round). Teams are scored independently. Only the
end of the round is considered for scoring (if you collect treasure, then lose it by hitting a wall, then you
don’t get points for it; the "kill count" achieved by using mines is however not reset with drone crashes).

Each collected treasure is worth 5 points at the end of each round. Blowing up an enemy drone is worth
20 points.

Protocol

Teams control their drones by sending and receiving UDP packets. All data is binary , and represented in
the little endian format. Fields listed in the packet descriptions follow each other immediately, there is no
padding.

All audio data is represented using 4 byte floats for samples, clamped between -1.0 and 1.0, sample rate
5000 Hz.

There are only two packet types: the one sent by the team to the control server, and the one sent by the
server to the teams.

Used field types

u8 - 8 byte unsigned integer (uint64_t)
u4 - 4 byte unsigned integer (uint32_t)
float - 4 byte IEEE 754 float

Team to Server

u8 seq - sequence number
u4 mine_release
u4 samples - number of samples following in the sample_data array

39

float accel_x - west to east acceleration
float accel_y - south to north acceleration
array of float sample_data - audio to play

Sending this packet to the server automatically subscribes for drone update data for one second. If the
team doesn’t send a packet for one second, then the updates will stop.

The sequence number is expected to monotonously increase. Packets with decreasing or identical
sequence numbers are ignored. If the team drops the subscription by not sending a packet for one second,
then the expected sequence number is reset. The first packet sent has to have a sequence number of at
least 1, otherwise it will be ignored.

If mine_release is larger than a value received in a previously received valid packet, then the proximity
mine is deployed.

accel_x and accel_y should be clamped between -1.0 and 1.0. Positive x accelerate the drone towards east,
while positive y accelerates towards north.

samples should contain the number of samples to be played on the loudspeaker. The sample data itself
should be loaded in the sample_data array (added to the end of the packet). samples may be 0, of
course. Audio to be played is added to the end of the drone’s outgoing audio buffer. The drone plays audio
at a 5000 Hz sample rate.

Server to Team

u8 seq - sequence number
u8 last_seq - last seen incoming sequence number
u4 kills - enemy drones sunk in this round
u4 blown - times blown up by mines in this round
u4 collisions - wall collisions in this round
u4 treasure - treasure collected since the last crash in this round
u4 mines_available - proximity mines available (1 or 0)
u4 emitter_buffer - free space in the outgoing audio buffer (sample count)
u4 samples - number of samples following in the sample_data array
float velocity_x - west to east velocity
float velocity_y - south to north velocity
float emitter_energy - available loudspeaker energy
array of float sample_data - audio from the microphone array

If the server received a valid packet from the team in the last second, the server will keep sending the
packets defined above (at a rate of about 20 Hz).

The sequence number will be monotonously increasing (throughout the contest).

If the blown or collisions values are increased compared to a previously received packet, then the
drone had been moved to a random position.

40

emitter_buffer returns the amount of free space in the drone’s outgoing audio buffer. This may be
used to implement continuous playback. If too much audio is sent, it will silently overwrite old data in the
buffer.

emitter_energy is decreased by every played sample, and is otherwise continuously replenished up to
a set maximum. If emitter energy is depleted during playback, the drone’s outgoing audio buffer is
cleared.

velocity_x is positive when the drone is going east, while velocity_y is positive when the drone is
going north.

sample_data is an array that contains samples * 4 floats. The 4 microphones in the microphone array
capture the same amount of samples, which are interleaved in the sample_data array in north, east,
south, west order. samples indicates the number of groups of floats in the array, so the total amount of
data in the array is samples * 4 floats.

Control Servers

There are two servers, one for each arena. The servers are visible through two different ports on
server.ch24.org . For each round, each team is assigned to one of the two servers randomly. Only
the server that the team is assigned to will answer their packets; the other server will (safely) ignore them.

There is no way for a team to know which server they’re assigned to in the beginning of a round, so
you have to send packets to both servers (both ports) until one of them answers.

When a round ends, the servers will stop communicating for about 15 seconds. During this time, the
scores are recorded, the arenas are rearranged, and teams are resorted between the servers. This means that
if you lost the connection for a few seconds, you have to start trying to contact both servers, because you
may have been moved to the other one.

When the servers start communicating again, a new round begins in a new environment. Rounds will
always begin at "round" times (09:00, 09:10, 09:20 and so on), and end roughly 15 seconds before the
beginning of the following round. (In case of a malfunction in the server infrastructure, rounds may be
skipped, but following rounds won’t be shifted - they will start at the next suitable "round" time.)

41

KLM. OSM

Sloths don’t use GPS to navigate in their forest. They
simply remember the map of the whole world and trace
how much they move in which direction.

This set of tasks will give you an impression of their
storage and processing capabilities. You’ve received
two large files (and a small patch file). These files are a
filtered extract of the OpenStreetMap project,
containing ways and the corresponding nodes only, for
the whole world. The large files are compressed with
gzip, which enables decompression while reading,
block by block.

source:
http://spaceflight.nasa.gov/gallery/images/apollo/apollo17/html/as17-148-22727.html

Coordinate system
The Earth is a perfect sphere with R = 6371.0 km radius. Nodes are positions on the surface of the
Earth and they are given by latitude, longitude coordinates in degrees (-90 ≤ latitude ≤ 90, -180 ≤
longitude ≤ 180).

A way is a path on the surface and it is given by a sequence of nodes.

Input
Node coordinates are listed in input_nodes.txt.gz. Each line is a node with an integer node ID and a
floating point latitude and longitude in decimal format. Ways are described in input_ways.txt.gz, one way
per line. The first column is an integer way ID, the next integer is the number of nodes the way consists of,
the rest of the line lists the node IDs.

There’s a separate nodes_patch_0.txt, in uncompressed form, which has the coordinates of a couple of
nodes missing from the original input_nodes.txt.gz; please process these nodes along with
input_nodes.txt.gz.

Distance Formula
Most calculations can be done approximately, double precision floating-point arithmetics should give
more than enough precision. We give a formula for the distance between two nodes, but other methods
may be used as well for the calculations:

42

function distance(lat0,lon0, lat1,lon1)
{
 p0 = xyzcoords(lat0, lon0)
 p1 = xyzcoords(lat1, lon1)
 n01 = cross(p0, p1)
 c = dot(p0, p1)
 s = sqrt(dot(n01, n01))
 return R * atan2(s, c)
}

function xyzcoords(lat, lon)
{
 x = cos(lat*pi/180)*cos(lon*pi/180)
 y = cos(lat*pi/180)*sin(lon*pi/180)
 z = sin(lat*pi/180)
 return (x,y,z)
}

Where cross and dot are the cross and dot products of (x,y,z) vectors, sin , cos , atan2 and sqrt
are the usual mathematical functions, R is the radius of the Earth and pi is pi.

43

K. OSM - Search (1000 points)

Sloths have a special instinct for sensing gold. If they’d ever
be interested in collecting gold, they could hoard up 95% of
the world’s gold reserves within 24 hours. Of course solving
algorithmic problems is much more interesting for sloths so
they just ignore this skill of theirs.

However, a friendly sloth has offered her API to this instinct
(on a strictly voluntary basis), so she can help you find the
treasures.

Treasure is always hidden near a node of the OpenStreetMap
database. In a query you shall submit the ID of two nodes and
the sloth will return them ordered so that the first returned ID
is geographically closer to the gold. If any of the two nodes
matches the treasure-node, the treasure is found.

source: http://www.clker.com/clipart-2123.html

Your task is to find 20 treasures by issuing the smallest amount of queries.

Protocol
The eval server provides a plain text, line based TCP socket you need to connect to. Each line is a message
and is terminated by a single newline character (’\n’).

The server announces each treasure with a "start I", where I is the ID of the current treasure. After that the
client can start sending queries. Each query consists of two unsigned integer node IDs in a single line,
terminated by a ’\n’.

In case N1 or N2 hits the treasure, the server sends a "success" message.

Otherwise the server answers queries with the message "closer N1 N2", where N1 and N2 are the two
nodes of the query ordered such that N1 is closer to the treasure.

If the treasure is not found within 200 queries, the server announces the failure with a "fail" message and
sends the target node ID using the "solution ID" message.

The server keeps the connection open until the first failure or until all the 20 treasures are found
successfully or another client connects from the same team.

Scoring

If all the treasures are found successfully then the awarded score is

 SCORE = 100*(1 - sqrt(1 - BEST/Q))

where Q is the number of queries made during the treasure hunt and BEST is the best submission.

44

L. OSM - Path (1000 points)

Of course a path finder algorithm running on a silicon based
computer can bever be as fast as the ones in the brains of
sloths. Nevertheless, before you start solving Problem M, the
race game, it might be useful to play around a bit with path
finding in the OSM database.

Given two nodes in the OpenStreetMap database, find any
path between them along the given ways.

source: http://www.clker.com/clipart-2123.html

Input
A source and a target node.

Output
A list of node ids on separate lines each, where consecutive nodes are on the same way and the first node
in the list is the given source node and the last node is the given target node.

Example input
826166335 257726479

Example output
826166335 101497069 257726480 257726479

45

M. OSM - Race (3000 points)

A random citizen far away has reported
something strange: a sloth that can not
program in functional programming
languages! This is a very rare and exciting
opporunity so you decide to abandon even the
International Sloth Conference to race there
and examine that special sloth.

Of course you are not the only one on the
conference who is interested in such oddities -
there are potentially 29 competitors starting
from the same parking lot with their cars
trying to get there faster. This can cause quite
a traffic jam that slows cars down.

The sloth who can not program; photo source:
http://pixabay.com/en/sloth-mammal-animal-cost-rica-318882/

During the contest a new race will be started at every hour. There will be a 5 minutes connection time after
a race is started when clients can connect to the race server at the specified TCP port (see table in the
introduction). A race lasts at most 50 minutes, during which teams should get from a given source node of
the OpenStreetMap to a given target node stepping along the ways in several rounds. The first team who
arrives at the target gets the maximum score for the race.

Protocol

Server sends plain text messages ending in ’\n’. Each meassage is a command word followed by zero or
more parameters separated by space.

Connection period

During the connection period the server sends a count down message every second

 start S

where the S parameter is the remaining seconds until the end of the connection period.

Rounds

The connection period is followed by R rounds of the race. The server announces a round with the

 round K R G

message, where K is the index of the round that goes from 0 to R-1 and G is the target node id (same for
the whole race). Then the server sends to each client its id ID :

46

 yourid ID

And the positions of each racing teams:

 pos ID N

meaning that team ID is at node N on the map. (When the race starts all teams will be on the same node).

One round takes 3 seconds during which clients can send their movement for the round. A movement
consists of a sequence of steps to adjacent nodes along the ways of the OpenStreetMap. At most 100 steps
can be made in a round. The format of the client message is a sequence of node ids, each on a separate
line.

After the clients sent their movement the race server evaluates them in the following way: For invalid
movements the server sends either

 error message

or

 warning message

to the client, in case of an error all the client steps are discarded for that round, in case of a warning the
server continues processing the steps made by the client. The server calculates the positions of all clients
after each step. In case two or more teams are on the same node after a step then they "collide" and one
step is discarded from their 100 movements (the last not yet discarded step if there is any such step). The
server sends a warning message to the collided teams.

If a team with id ID arrives at the target node id G in a step then the server announces it as

 arrive ID STEPS

where STEPS is the number of steps it took for the team to arrive.

The race ends when all teams arrived all there are no more rounds.

47

Scoring
Each race has a max score

race start max score

9:00, 10:00, 11:00, 12:00, 13:00, 14:00 50

15:00, 16:00, 17:00, 18:00, 19:00, 20:00 100

21:00, 22:00, 23:00, 00:00, 01:00, 02:00 150

03:00, 04:00, 05:00, 06:00, 07:00, 08:00 200

Every successful team gets at least half of the max score for the race. The team that arrived first gets the
max score, the other successful teams get a scaled score based on the order they arrived in.

48

N. Dog tag (1000 points)

Sloths are born with a dog tag: a special bone that grows in
their neck, the ID bone. This little piece of bone is more
solid and homogeneous than their average bone tissue.
Information is conveyed in little bubbles (chambers filled
with gas) embedded in this bone. This makes it very easy to
identify any dead sloth during an autopsy by slicing the ID
bone.

Sloth research has reached a point where it became
essential to be able to acquire those IDs. Large amounts of
sloths are being slaughtered at this very moment in order to
provide ID bone samples for researchers who are
developing the ultimate software to decode bone slices.
You can save a lot of sloths by proving the task can be
solved without dissecting thousands of sloths for their ID
bones.

source:
http://commons.wikimedia.org/wiki/File:Skeleton_of_a_Three-toed_Sloth.jpg

Simulated ID bones have been sliced up, digitized and vectorized for your experiments. Your task is to
extract the information stored in these IDs and return the bits in an ASCII file.

The bone may have a lot of smaller and larger bubbles, some of them encoding bits while others are mere
noise (it’s very hard to grow 100% solid material!). Looking at the volumes of the bubbles it is easy to
decide which one is which:

purpose volume remarks

fiducial ~ 8 * V there are only three of these

bit 0 ~ 4 * V

bit 1 ~ 1 * V

noise <= 0.1 * V some input bones won’t have noise

NOTE: V is an unknown volumetric unit that may change from input to input.

Slicing happens at a random angle (can’t align the saw without seeing into the bone), while center-of-mass
of the bit-bubbles are aligned into a 3d grid. The three fiducial bubbles are perfect spheres and are always
placed on the first plane such a way that they form an isosceles rightangle triangle. The closest bubble to
the fidu bubble at the rightangle is the first bit of the first plane. Thus the input slices are given in an X’ Y’
Z’ slice coordinate system while output must be read out using an X Y Z grid coordinate system (see the
figures below for details); the connection between the two systems are determined using the fiducial
bubbles.

49

The solution has to be read out plane by plane, first among increasing X, then among increasing Y and
finally by increasing Z (in the grid coordinate system). Slices are spaced evenly at an unknown but
constant distance from each other (this distance may vary between inputs).

The last 4 bits of every data plane is a simplistic checksum. Checksum state consists of two integers: a
sum and an accumulator, initialized to 0 before each plane. Bits are shifted into the lowest bit of the
accumulator in order of appearance:

 accum := (accum << 1) | input_bit

After every 4 bits, the sum is updated using the following formula, and the accumulator is zeroed.

 sum := ((sum >> 1) + ((sum & 1) << 3) + accum) & 0xF

If the end of the useful data in the plane is reached (before the first bit of the checksum at the end), and we
have shifted some bits in the accumulator that we haven’t used for a checksum update yet (1 to 3 bits "left
over"), then we use the current value in the accumulator to update the checksum (using the above formula)
one last time.

The final value of the sum will comprise the checksum, written as 4 bits, from MSB to LSB.

50

tag (upper) and slice (lower) coordinate systems

Legend: fiducial bubbles are marked with F, data bubbles are marked with an integer to illustrate the order
of reading out the bits. There are no noise bubbles on this illustration and data bubbles happen to be
perfect spheres. To make the illustration easier to read, only every 10th slice is presented; when all slices
are considered it’s guaranteed that all data bubbles and fiducial bubbles are crossed by at least one slice. X
Y Z is the aligned grid system for reading out the data; X’ Y’ Z’ is the slice system (inputs are given in
that).

51

Input
First line of the input is an integer S, the number of slices. The next S blocks describe each slice. The first
line of a slice is L, the number of loops on that slice. Each loop describes the contour of a bubble as seen
on that slice, in the next L lines: the first integer N is the number of vertices, followed by N pairs of x;y
coordinates for the vertex. The vertices are given in CW or CCW order.

Input coordinate system: x increases from left to right, y increases from top to bottom on each slice; slices
are ordered from lower z to higher z (so that the top slice is described first in the file).

Output
The encoded data is a 3d bit matrix in the original grid system. The matrix is a sequence of planes (with
different Z coordinates) and each plane is a sequence of rows (with different Y coordinates) and each row
is a sequence of bits (with different X coordinates). The output is the plain text sequence of zeros and ones
one row per line and planes separated by an empty line. The last plane may be incomplete and may end in
an incomplete row.

The ordering and orientation of the bits is shown in the figures above as well. (The decoded bits should
appear in the same order as they are indexed on the figure)

Example input
Please refer to 0.in in the input directory.

Example output
1010
1011
0000
0000

1010
1011
1000
1

52

O. Ball (4000 points)

Sloths usually do not hurry while moving around.
For some researchers this is a great challenge: they
need to change the location of a sloth in the cage
they keep him in without touching him (to avoid
contamination of the fur). The common method is to
wait until the sloth curves into a perfect sphere and
goes to sleep then tilt the cage so that the sloth rolls
where they need him.

Your task is to develop software that can reliably
move the sloth around in a cell with an imperfect
floor. There is a model of the cell equipped with
servos; the sloth is modelled with an orange ball (lab
sloths are on strike this week anyway).

Sloth rolled up into a little orange ball. source:
http://commons.wikimedia.org/wiki/File:Choloepus_didactylus_2_-_Buffalo_Zoo.jpg

scripting the motor control

There are DC motors driving the mechanism. The output states are speedX and speedY with integers
between -127 and +127, proportional to the voltage the motors get (to the speed they change the angle of
the table at). Once a script command changes the voltage, it remains the same until another script
command changes it again.

The script also has three input channels: X and Y angles and time. Time is a 12 bit unsigned integer
increased at about 4 Hz in real time. X and Y are implemented as incremental optical sensors and are
represented as 9 bit unsigned integers. The table is horizontal at an arbitrary X and Y angle measured by
the sensors - this info will be made available during the contest.

The device has a script memory where 8 statements can be stored in an ordered list of slots. The user may
upload a new command into any slot at any time asynchronously. Each statement has the following parts:

slot ID
break bit
a zero (for compatibility reasons)
condition (cond and cond-arg)
command
command argument

The main loop of the device first waits until any of the three inputs change then executes the script. Script
execution takes each slot starting from slot 0 and evaluates the condition of it; when the condition doesn’t
match, evaluation simply continues with the next slot. Upon a match, the command of the statement is
executed (so that speedX or speedY can be changed) and then break bit of the statement is evaluated: if br
is set, execution stops and no further statements are considered for this event (execution restarts from slot
0 upon the next event)

53

There are three valid commands:

command
command

arg
effect

report n/a send back a time position report; argument is ignored

speedX S
S is the new speed for the motor driving the X axis; S is an integer between

-127 and +127

speedY S
S is the new speed for the motor driving the Y axis; S is an integer between

-127 and +127

It is not recommended to drive the motors below speed 30. For halt, use speed 0. When motors are
operated on high speed (typically above 60), there are some overshots due to the inertia of the system:
when the motor is stopped, the mechanism will still spin a few positions until the system finally halts.

Sending reports too often may crash the firmware. Sending a report every time tick is safe (see example
1).

Conditions may check time (T), or a coordinate (X or Y). For time the following two checks are available:

condition condition arg effect

T% divisor matches whenever time modulo divisor is 0 (i.e. every divisor-th iteration)

T>= target matches when time is greater or equal to target time (in ticks)

Coordinate conditions:

condition condition arg effect

X~ target X position is close to the target

X> target X position is larger than target

X< target X position is less than target

Y~ target Y position is close to the target

Y> target Y position is larger than target

Y< target Y position is less than target

54

examples
Example 1: slot 4 sends a report every iteration:

4 0 0 T% 1 report 1

4 is the slot ID, the first 0 is the break bit (0 means do not break when condition is met so that the rest of
the script will run). The second 0 is a mandatory constant field; "T% 1" is the condition that matches every
iteration (when time modulo 1 is zero). The command to be executed upon match is "report 1", which will
send back a status report (1 is a dummy argument).

Example 2: the following three slots (randomly placed in the memory from slot 2) will drive the
mechanics to around X position 110 and stop there:

2 0 0 X< 100 speedX 55
3 0 0 X~ 110 speedX 0
4 0 0 X> 120 speedX -55

While X position is out of the 100..120 range, command the motor to drive the mechanics towards this
range at speed 55. When position gets close to 110, stop the motor.

It is possible to write more complex scripts that drive the mechanism faster when it is farther away from
the target.

The returned format for the report command is

T X Y

where T is the 12 bit time and X, Y are the axis positions in decimal format.

Input
There is a virtual grid overlaid on the webcam’s image. The grid layout will be published during the
contest in PNG format (pixel offsets may change from time to time as rigid mounting of the camera is not
easy). Grid coordinates are integers, the upper left cell being 0;0. Grid coords are aligned to the camera
coordinate system (increasing X is right, increasing Y is down on the image).

For each input there is a different grid setup. There are forbidden cells in the grid, marked with a little red
cross in the middle of the cell. If center of the ball enters such a forbidden cell, the solution is not
accepted.

For each input there are one or more target cells the ball should visit in order. When reaching a target cell,
the ball must stay in that cell for at least 2 seconds. The server will say "# reached" when that condition is
met. The input is accepted if all targets are reached in the right order, without touching forbidden cells.

The eval server uses the same webcam stream for calculating the center of the ball. This method can not
yield 100% precise ball position info due to camera resolution and noise. Teams will probably have their
own image processing which may constantly report slightly different positions.

55

In any case, whether the ball is in the target cell or crossed the boundary of a forbidden cell is judged by
the eval server position. Cells are much larger than the ball, teams are encouraged to play safe: keep the
ball around the center of a target cell, still, and avoid going near to any forbidden cell.

communication protocol in the preparation phase

The control server uses a line oriented plain text protocol over TCP/IP. Line terminator is \n. Each line is a
new message.

After connecting the server the player gets into a queue. A new connection from the same team replaces
the existing connection without changing the place in the queue (the old connection is closed by the
server). If the connection dies before a new connection from the same team the position in the queue is
lost and a later connection will stand at the end of the line.

Messages sent by the server start with "##" while the connection is in the queue. Messages from the team
during this period is considered a protocol error.

When the hardware is avaialble, the first connection in the queue gets redirected. This is indicated by a "##
GO" command from the server. After sending this message the server redirects any messages read from
the team to the hardware service. The GO message also lets the team know they should start streaming the
video from the camera.

The next phase is the hardware control phase. There are in-band messages (status reports from the
firmware) and out-of-band messages (eval server reports about errors or progress of solution). Out-of-band
messages start with a "#"

The hardware server first says "# input?" for which the team must answer a single integer in one line,
naming the input to be prepared. There is a timeout of 2 seconds; if the team fails to name the input within
that time frame, the server closes the connection and a new connection gets to the end of the queue.

When preparation is ready (and the hardware calibration is over), the server says "# start I" (where I is the
input number) and the slot timer starts. When the slot is over the server says "# timeup" and closes the
connection. A new connection will be appended to the queue. If your control manages to keep the ball in
the next target cell for the required period of time, a "# reached X Y" is sent by the server, where X and Y
are the cell coordinates. This indicates that the ball should start its journey to the next target. When all
target reached (the input is correctly solved) the server sends a "# accepted solution" message and closes
the connection.

When the ball visits a forbidden cell, the server sends "# fail: visited forbidden zone at X Y" and closes the
connection.

56

	
	Contest
	Rules
	Web server
	Submission site
	Task summary
	Ports
	Contact

	Prologue: sloths
	A. Halting problem (1000 points)
	Input
	Output

	B. Bug fixing (4000 points)
	Program format
	Evaluation
	Input
	Output

	C. Complete program (1000 points)
	Input
	Output

	D. Firing Game (1000 points)
	Input
	Output

	E. Disease (1000 points)
	Input
	Output

	F. Swap (1000 points)
	Input
	Output
	Scoring

	GHI. Slothlers
	Overview
	Reference tables
	Ground types
	Resources
	Buildings

	Game rules
	Turn structure
	Coordinate system
	Construction of buildings
	Construction of roads
	Transportation
	Destroying buildings and roads
	Production
	Territory ownership
	Initial state

	Communication protocol
	Connection phase
	Game phase
	Server broadcast
	Player commands

	Input

	G. Slothlers - Manage (500 points)
	H. Slothlers - Produce (500 points)
	I. Slothlers - Tournament (3600 points)
	J. Sonar (about 5000 points)
	Scoring
	Protocol
	Used field types
	Team to Server
	Server to Team
	Control Servers

	KLM. OSM
	Coordinate system
	Input
	Distance Formula

	K. OSM - Search (1000 points)
	Protocol
	Scoring

	L. OSM - Path (1000 points)
	Input
	Output

	M. OSM - Race (3000 points)
	Protocol
	Connection period
	Rounds

	Scoring

	N. Dog tag (1000 points)
	Input
	Output

	O. Ball (4000 points)
	scripting the motor control
	examples
	Input
	communication protocol in the preparation phase

